The physical frailty syndrome as a transition from homeostatic ...

文章推薦指數: 80 %
投票人數:10人

Frailty in aging marks a state of decreased reserves resulting in increased vulnerability to adverse outcomes when exposed to stressors. Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature natureaging perspectives article Thephysicalfrailtysyndromeasatransitionfromhomeostaticsymphonytocacophony DownloadPDF Subjects AgeingDiseasemodelDynamicalsystemsEndocrinesystemandmetabolicdiseasesNonlineardynamics AbstractFrailtyinagingmarksastateofdecreasedreservesresultinginincreasedvulnerabilitytoadverseoutcomeswhenexposedtostressors.ThisPerspectivesynthesizestheevidenceontheaging-relatedpathophysiologyunderpinningtheclinicalpresentationofphysicalfrailtyasaphenotypeofaclinicalsyndromethatisdistinctfromthecumulative-deficit-basedfrailtyindex.Wefocusonintegratingtheconvergingevidenceontheconceptualizationofphysicalfrailtyasastate,largelyindependentofchronicdiseases,thatemergeswhenthedysregulationofmultipleinterconnectedphysiologicalandbiologicalsystemscrossesathresholdtocriticaldysfunction,severelycompromisinghomeostasis.Ourexegesispositsthatthephysiologyunderlyingfrailtyisacriticallydysregulatedcomplexdynamicalsystem.Thisconceptualframeworkimpliesthatinterventionssuchasphysicalactivitythathavemultisystemeffectsaremorepromisingtoremedyfrailtythaninterventionstargetedatreplenishingsinglesystems.Wethenconsiderhowthisframeworkcandrivefutureresearchtofurtherunderstanding,preventionandtreatmentoffrailty,whichwilllikelypreservehealthandresilienceinagingpopulations. DownloadPDF MainWhydosomeolderpeopledieinthefaceofheatwavesandothersdonot?WhathascreatedtheheightenedriskofmortalityfromCOVID-19inolderpeople?Thisvulnerabilitycomesinpartfromtheeffectsofchronicdiseasesandotherhealth-relatedconditionsthataccumulatewithincreasingage.Wehypothesizethatitalsoresultsfromwhatcliniciansterm‘frailty’,astateofdepletedreserveresultinginincreasedvulnerabilitytostressorsthatemergesduringagingindependentlyofanyspecificdisease.Definitionsoffrailtyareabound.Thetwodominantlyusedare‘phenotypicfrailty’,whereavalidatedclinicalpresentationmarksadistinctclinicalsyndromeandpathophysiology1,2,anda‘deficitaccumulationmodel’frailtyindex,whichsummarizesthepresenceofmultipleclinicallyidentifieddiseases,theirclinicalandlaboratorymanifestationsandconsequences,andriskfactorsintoacompositeindexforriskprediction3,4.Thesetwodistinctconceptualizationsbothcarrythesamenomenclatureandbothpredicthighmortalityandinstitutionalizationrisk,buttheydenotedifferenttheory,etiologies,measuresandpossiblyprocesses,andidentifyconsiderablydifferentpopulationsanddifferenttargetsofintervention5.Otherdefinitionsoffrailtyhaveintegratedadditionalconstructs,particularlycognitivefrailty,asproposedbytheInternationalAssociationofGerontologyandGeriatrics/InternationalAcademyonNutritionandAging(IAGG/IANA)6,7.However,suchintegrationhasthepotentialtoobscuremeaningfuldifferences,asexemplifiedbytheobservationthat22%ofpeoplewithAlzheimer’sdiseasehadnophysicalindicatorsoffrailty8.Thisisreinforcedbyclinicalencounterswitholderadultswhoarephysicallyrobustbutcognitivelyfrailandviceversa.Accordingly,weviewothertypesoffrailty,whethertheyarecognitive,emotionalorpsychosocialfrailty,asimportantbutdistinctconstructsthatcanbemostfruitfullymeasuredseparatelyfromeachotherandfromphenotypicfrailty.Bothphenotypicallyidentifiedfrailtyandthefrailtyindex,finally,alsolinktootherconstructsingerontology,notably,‘allostasis’,‘homeostasis’,‘robustness’,‘reserve’and‘resilience’.Athoroughdisambiguationoftheserelatedconceptsisbeyondourscope,butprovisionaldefinitionsaregiveninBox1andconsideredbelow.Thesyndromeofphenotypicfrailty—henceforthtermed‘physicalfrailty’—isthefocusofthisPerspective.Clinicalpresentationofthephenotypedenotesadistinctivehigh-riskclinicalstatethatindicatesdecreasedreservesandhighvulnerabilitytostressors.Thestateisclinicallyrecognizablethroughthepresenceofthreeormoreoffivekeyclinicalsignsandsymptoms:weakness,slowwalkingspeed,lowphysicalactivity,fatigueorexhaustion,andunintentionalweightloss(Fig.1andBox1)1,2.Prevalenceinpeople65yearsandoldervariesacrosspopulations,withapredominantrateof7–10%incommunity-dwellingolderadults,whichincreasestoover25%inthoseover85yearsold1,2,9,10,11.Theconstellationofthreeormorecriteriaconstitutesadiagnosisoffrailty,whichhasbeenvalidatedtopredictadverseoutcomesincludingdeath,disability,lossofindependence,falls,hospitalization,diminishedresponsetodisease-targetedtherapies,higherriskofadverseoutcomeswithsurgeryanddelayedrecoveryfromillness1,2,12,13.Consistentwithaclinicalsyndrome2,thephenotypeislinkedtospecificpathophysiology.Physicalfrailtyoftenpresentswithoutclinicaldiseasesordisability,butitcanalsoco-occurwithdiseaseanddisability1,2,14,15(Box1).Thisisconsistentwithsubstantialresearchtodisentanglemultimorbidity,disabilityandfrailty,whichshowsthatthesearedistinctentitiesthatcanariseindependentlyaswellasbecausallyrelated16.Risksoffrailtyonsetorprogressionareespeciallyhighinthefaceofstressors1,soitisconsideredtobeastateofheightenedvulnerability.Fig.1:Ahierarchical,multiscalerepresentationofthephysiologicaldysregulationandlikelybiologicaldriversofphysicalfrailty.Theschemadepictstheclinicalsyndromeofphysicalfrailtyasanemergentproperty,atthehighestlevelofthehierarchy,underlainbyphysiologicalmodules(systems)atasmallerscaleandcellular/molecularmodules(systems)atanevensmallerscale.Goldcirclesrepresentthethreemajorphysiologicalmodules(systems)withthemostevidenceofinteractionsandthemostevidenceofarelationshipwithfrailty.Orangeovalsrepresentsubmodules(subsystems)withinthesethreelargermodules.Stressorsfromage-relatedbiologicalchangesatthecellular/molecularscale,representedinpurpleovals,likelyunderliedysregulationofthephysiologicalmodulesrepresentedabove,whichalsointeractwitheachother.Theaggregatephysiotypeofdysregulation(darkorangeoval)isassociatedwithboththephenotypeofphysicalfrailty,inthetopoval,andthevulnerabilityassociatedwithitsstate.Adaptedfromref.106.FullsizeimageIncontrast,thedeficitaccumulationmodelisconceptuallybasedontheclinicalobservationthatamultiplicityofclinicalproblemsinapatientcreatesaggregateriskofpooroutcomes,suchasmortalityandinstitutionalization.Thishasbeenoperationalizedasa‘frailtyindex’,whichcalculatesthepercentageofconditionsor‘deficits’identifiedclinically,relativetothenumberassessed,includingdiseases,symptoms,signs,impairments,disabilitiesandmeasuredfunctionallimitations,socialsettings,physicalactivity,mentalhealth,cognitivestatus,self-ratedhealthandsometimeslaboratoryvalues3,4.Thisarticlefocusesonthepathophysiologyofthesyndromeofphysicalfrailty,examininghowthephenotypemayemergeasadistinctstatelinkedtoseveredysregulationofkeyphysiologicalandbiologicalsystems:thestress-response,metabolismandmusculoskeletalsystems.Inhealthyadults,multiplephysiologicalsystemsfunctionwellandinteractharmoniouslyinacomplexdynamicalsystem,asinasymphony,tomaintainallostasisandhomeostasis.However,aspeopleage,individualphysiologicalsystemsdeclineintheirefficiency17andcommunicationbetweencellsandbetweensystemsdeteriorates18.Wehypothesizethatthisresultsinacacophonyofmultisystemdysregulation,whicheventuallycrossesaseveritythresholdandprecipitatesastateofhighlydiminishedfunctionandresilience,physicalfrailty.Thishypothesisrestsonaconceptualizationofthephysiologicalandbiologicalpathwaysunderlyinghealthandresilienceaslinkedelementsofacomplexdynamicalsystem(seeBox1foraglossaryoftermsandBox2forabriefintroduction),withseveredysregulationofthissystemunderlyingphysicalfrailty.Whilecomplexdynamicalsystemsmaysoundformidabletosome,thekeyinsightissimplythatone’sphysiologicalstateresultsfromnumerousinteractingcomponentsatdifferenttemporalandspatialscales(forexample,genes,cells,organs)thatcreateawholeunpredictablymorethantheparts19.Foranalogy,consideraclenchedfistasastateofthehand:thereisnodoubtthatthisstateiscontributedbycellsandmolecules.Nonetheless,themostimportantinsightsintothatfistarelikelytocomefromthehand’sstructure(fivedigits,opposablethumb,muscle–bone–motorneuronstructure)andfrominsightintotheteleologicalcontrolatahigherlevel(anger,aggression,evolutionaryusesofhands,andsoon).Applyingasimilarlogictophysicalfrailty,knowingthestateofalltheunderlyingbiologicalcomponentsmaynotadditivelysumtotheoverallstateofhealthoraccuratelyinfertheintegratedcapabilitiesofthehigher-levelorganism.Thisexampleillustratestheimportanceofhierarchyincomplexdynamicalsystems,whereinteractionsamongnestedandparallellevelsofcomposition(forexample,cells,tissues,physiology)contributeessentiallytotheoverallfunction.Thinkingoncomplexdynamicalsystemsoffersadditionalcompellingconceptualframeworkelementsforcharacterizingphysicalfrailty.Specifically,wesummarizebelow,inastepwiseprogression,evidencethatthepathophysiologyoffrailtymeetscriteriaforcriticaldysregulationofthecomplexdynamicalsystemnecessaryforhomeostasis:(1)physiologyismodularlyorganizedinhealthyorganisms,andnumerousmodulesaredysfunctionalinphysicalfrailty;(2)thedysfunctionisparticularlyapparentintheabilityofthesystemsandmodulestorespondtostressors;(3)thedysfunctiondoesnotproceedindependentlyineachsystembutratherisfundamentallyaboutinteractionsamongsystemsviafeedbackloops;(4)theimpactsofthedysfunctionarenotlinearbutexhibitexponentialand/orthresholdeffects;and(5)thesedynamicscanleadtocriticaltransitionsandabruptshiftsinphysiologicalstate.Wethenconsiderthebiologicalhallmarksofaging18thatcoulddiffuselyaffectallfunctionsofthiscomplexdynamicalsystemandmaybeaffectedbythephysiologicaldysfunctionsassociatedwiththephenotypeitself.Weconcludebyconsideringimplicationsandnext-stageresearchagendas.Box1AglossaryofkeyterminologyAdaptation.Achangeinthestructureorfunctionofanorganismthatincreasesthefitnessoftheorganismforsurvivaland/orreproduction.Thisisafundamentalattributeofacomplexsystem:thatitcanchangeitsrulesofoperationinresponsetoachangingenvironment.Allostasis.Theconceptofallostasisisbasedonthepremisethatthegoalofregulationisnottoachieveaconstantinteriormilieu(asinhomeostasis)buttocontinuallyadjustthemilieutopromotesurvivalandreproduction.Allostaticloadisthecostofmaintainingstabilitywhentheorganismisrepeatedlyconfrontedwithstressfulsituations109.Complexsystem.SeeBox2foradetailedcharacterizationofcomplexsystems.Criticaltransition.Atypeofemergentpropertyofacomplexsystem.Itisasharporabruptchangeinthestateofasystemwhenthecontrolsettingsofthesystemchangeminimally.Anexampleisthephasetransitionofwaterfromaliquidstatetoasolidstateinvolvingasmallamountofchangeinambienttemperaturearound273.15 K.Dynamicalsystem.Asystemwhosestatechangesovertime.Emergence.Occurrenceofnew,unexpectedphenomenainacomplexsystem.Typically,theemergentphenomenaoccuratahigherspatialortemporalscalethanthescaleatwhichthesystemcomponentsareinteracting110.Frailtycumulativedeficitindex.Increasedvulnerabilitytoadverseoutcomesandmortalityisconceptuallymeasuredasarisingfromtheaccumulationofhealthdeficits.Healthdeficitaccumulationisoperationalizedinafrailtyindexwhereinthedeficitscanincludeanysetofsymptoms,signs,medicalillnesses,polypharmacy,cognitiveimpairment,functionalimpairment,andpoormobilityandbalance(orevenlaboratorybiomarkers).Frailtyindexiscalculatedastheproportionofhealthdeficitspresentinagivenindividual3.Frailtyphenotype(physicalfrailty).Aclinicalsyndromewithadistinctphenotypeassociatedwithdecreasedreserveandhighvulnerabilitytostressorsandwithriskofadverseoutcomesincludingmortality.Asastatedistinctfromthediseasesanddisabilitypresent,thephenotypeappearstobeassociatedwithadistinctpathophysiologyresultingfromcumulativedeclinesinmultiplephysiologicalsystems,especiallyalteredstress-response,metabolicandmusculoskeletalsystems,andwithunderlyingbiologicaldrivers.Thephysicalfrailtyphenotypeistheclinicalpresentationofthesyndromeandisdefinedbypresenceofthreeoffiveofthefollowingcriteria:weakness,slowness,lowphysicalactivity,exhaustion(orfatigue)andunintentionalweightloss(0,robust;1–2,prefrail;≥3,frail)1,2.Homeostenosis.Age-relateddecreaseintheamountofphysiologicalreservethatisavailableforrespondingtostressors,asaresultofwhicholderadultsbecomevulnerabletotheimpactofstressors111.Modularity.Asystemismodularifitismadeupofbuildingblocks,eachofwhichmayalsobeconsideredtobeanindependentsubsystem.Modularityisahallmarkofcomplexsystems,whichtendtobehierarchical(forexample,genes,cells,tissues,organs,humans,families,societies)112.Network.Asystemcomposedofhighlyinterconnected,interactingcomponents.Abstractly,networkscanberepresentedinagraphwhosenodes(vertices)denotetheelementsofthesystemandwhoseedges(links)denotetheinteractionamongtheelements.Nonlinearity.Inlinearsystems,theresponsechangesinamannerproportionaltothechangeininput,whereasinanonlinearsystemtheresponsecanincreaseordecreasedisproportionatelydependingonthemagnitudeoftheinput.Inputcanbeanexternalperturbationofthesystemoraninternalchangeinthecomponentsofthesystem.Correspondingly,themagnitudeofaninputisthemagnitudeoftheexternalperturbationorchangeininternalcomponents(forexample,theintensityofaphysicalactivity,concentrationofanenzymeinthecell).Linearsystemsaresuperimposableinthesensethattheresponseselicitedbytwodifferentinputsactingsimultaneouslyareadditive,whereasinnonlinearsystemsthemultipleinputsactnon-additively,forexample,exhibitingsynergyordysynergy.Reserve.Physiologicalreservecanbequantifiedbyaweightedaverageofthemaximumworkcapacityminusthebasalworkoutput(basalworkoutputistheworkrequiredtomaintainhomeostasisunderminimalstressconditions)ofeachphysiologicalsubsysteminvolvedinstressresponse113.Resilience.Theabilityofasystemtorecoverfromastressorofsufficientlylargemagnitudethatthesystemispushedintoastatefarfromitsoriginalequilibriumstateandultimatelyretainsitsessentialidentityandfunction114.Robustness.Theabilityofacomplexsystemtomaintainitsstructureandfunctionintact(phenotypicstability)inthefaceofinternalandexternalperturbations114.System.Acollectionofinteractingelementsthatformsanintegratedwhole.Aphysiologicalsystemisdelineatedanddistinguishedfromitssurroundingsbymotifssuchasfunction(forexample,immunesystem)andstructure(forexample,mitochondria).Usedheresynonymouslywith‘module’.Box2AbriefintroductiontocomplexbiologicalsystemsHerbertSimon19definesacomplexsystemas“onethatismadeupofalargenumberofpartsthatinteractinanon-simpleway.Insuchsystems,thewholeismorethanthesumoftheparts,notinanultimatemetaphysicalsense,butinanimportantpragmaticsensethat,giventhepropertiesofthepartsandthelawsofinteractions,itisnotatrivialmattertoinferthepropertiesofthewhole.”Complexsystemsareoftenadaptive,reorganizingtheirinternalstructurewithouttheinterventionofanexternalagent.Theevolutionofbiologicalcomplexsystemsisfundamentallydrivenbythedemandforrobustnesstouncertainenvironments115,116,117,whichresultsinhierarchicalstructures(forexample,geneticmutations,cellularoxidation,glucosemetabolism,musclefunctionandclinicalmanifestation)andmodularorganizationateverylevelofthehierarchy(forexample,atthephysiologicallevelthereareenergy,skeletalmuscleandstress-responsesystems).Themodulararchitecturesarecomposedofelaboratehierarchiesofprotocolsandlayersoffeedbackregulation112.Thereareinteractionsbetweenthemoduleswithinandacrossthelevelsofthehierarchy,althoughwithin-levelinteractionsaregenerallymuchstronger.Diminutionofsystemfunctionandweakenedinteractionsbetweensystemsarelikelytoberevealedwhentheorganismischallenged.Becausetheinteractionsarenonlinear,thebehaviorofthesystemasawholecannotbepredictedfromitsstructuralcomposition.Thisisknownas‘emergence’—amanifestationofradicallynovelbehavioratahigherlevelofthehierarchythatisunpredictableandnon-deduciblefromlower-levelorganization.Animportanttypeofemergenceiscriticaltransitions(forexample,water–iceorwater–steamphasetransitions),wherethesystemchangesabruptlyandanewstateoffunctionemerges67,118.Methodologically,thecomplexsystemstoolboxisbynowpackedwithmethodstoanalyzenetworks,dynamics,emergenceandmanyotherfeatures118,119,120.Oneofthemoststrikingfeaturesofcomplexsystemsistheirtranslatability:principlesthatapplyinonesystemtendtoapplyinmanyothers,suchthateconomists,climatescientists,physicists,ecologistsandevenliterarytheoristsfindtheyhavemuchtolearnfromeachother.Complexsystemstheoryisstandardfareinmanyfieldsbutrareamongbiologists.Thisissurprising,asmanyofthecanonicalexamplesofcomplexsystemscomefrombiology;forexample,cellulardynamics,theimmunesystem,neuralnetworksandecosystems119,121.Thisislikelybecausethemathematicalformalismischallengingandrequiresintegrationacrossdistinctareasofbiologicaldiscovery.Complexsystemframeworkswouldresultinverydifferentpredictionsthantraditionalmodelsofsignalingpathwaysanddirectphysiologicaleffectsofsinglesystems.PhysicalfrailtyisanemergentstateofacompromisedcomplexdynamicalsystemWepresenthereevidencethatphysicalfrailtyinagingemergesasacompromisedstateofadysregulatedcomplexdynamicalsystem.Thisevidenceispresentedprogressivelyintermsofthecriteriaforcomplexdynamicalsystems:themodularsystemsandsubsystemswhichfunctionbothindependentlyandinjointfeedforwardandfeedbackregulationthatcharacterizessuchsystemsandiscriticalformanagingallostasisandhomeostasis;theevidencethatsuchcoreregulatorysystemsassociatedwithphysicalfrailtyco-regulateeachotherandtheiraggregatedysfunctionisassociatedwiththephenotypeoffrailty;thatdysregulationofthesemultiplesystemsismadevisiblewhenchallenged;thatpastathresholdofaggregatephysiologicdysfunction,frailtyemergesasastateoflowerfunctionofthewholeorganism,andtheassociationisnonlinear;andthatthereisapointofnoreturnbeyondwhichfunctionatalowerstateisnolongercompatiblewithlife.AhealthyorganismiscomposedofmodularsystemswhosefunctionisabnormalwhenpeoplearephysicallyfrailAhealthyorganismiscomposedofsystems,ormodules,withlargelyindependentfunctions.Thefunctionofmostsystemsdeteriorateswithage17,18.Amongthefullpanoply,thereisacoresetofsystemsandsubsystemsthatarecriticalformanaginghomeostasisandwhichhavealsobeenshowntofunctionatabnormallevelswhenpeoplearephysicallyfrail20.Thesesystemsincludethemetabolic,musculoskeletalandstress-responsesystems(Fig.1).Wesummarizebrieflyhereevidenceoftheseassociations.Physicalfrailtyprevalenceandincidencehavebeenlinkedtoalteredenergymetabolismthroughbothmetabolicsystems,includingglucose–insulindynamics21,glucoseintolerance22,insulinresistance23andalterationsinenergy-regulatoryhormonessuchasleptin,ghrelinandadiponectin24,25,26,27,andalterationsinmusculoskeletalsystemfunction,includingtheefficiencyofenergyutilization28andmitochondrialenergyproductionandmitochondrialcopynumber29,30.Notably,acrossthesesystems,bothenergyproductionandutilizationareabnormalinthosewhoarephysicallyfrail.Theaggregatestress-responsesystemanditssubsystemsarealsoabnormalinphysicalfrailty.Specifically,inflammationisconsistentlyassociatedwithbeingfrail,includingsignificantassociationswithelevatedlevelsofinflammatorymediatorssuchasC-reactiveprotein,interleukin(IL)-6andwhitebloodcellsincludingmacrophagesandneutrophils,amongothers31,32,33,34,35,inabroadpatternofchronic,low-gradeinflammation36,37,38,39.Indicatorsofautonomicnervoussystemdysregulationinfrailtyincludediminishedsecond-to-secondheartratevariability40,41,42andcompromisedorthostatic43andcardiac44control.Physicalfrailtyisalsoassociatedwithdysregulationoffunctionsofthehypothalamic–pituitary–adrenal(HPA)axis,includinghigherlevelsandblunteddiurnalvariationofsalivarycortisol45,46andlowerlevelsoftheadrenalandrogenDHEAS47,48.Together,thesestudiescharacterizefrailindividualsaslessabletofinelytuneresponsestoenvironmentalvariation.Whilethesystemsidentifiedhereareneitherdefinitivenorexclusive,theylikelyformahubofdominantpathophysiologicalcharacteristicsinthephysicallyfrail.ExperimentalevidenceofimpairedphysiologicalresponsivenessofkeysystemsinthefrailTheabnormallevelsofbiomarkersinthethreesystemsaboveisnotablebutdoesnotofferformalevidenceoftheclinicalvulnerabilitytostressorsinfrailolderadults.Complexsystemstheorypredictsthatcompromiseddynamicalfunctioningofsystemsmaynotbeapparentinarestingornon-stressedstatebutemergesclearlyunderconditionsofstressortheneedtoadapt.Stimulus–responseexperimentsprovideaparticularlycompellingmethodtoelucidateandcharacterizeresponseunderconditionsofstress49.Wesummarizeherefiveexperimentsexposingcommunity-dwellingolderadultstominorphysiologicalstressorsinthesystemsdescribedabove(Fig.1)andtheresultingphysiologicalresponsesinphenotypicallynonfrail,prefrailandfrailindividuals.Althoughthefirstfourexperimentsrepresentpilotresearch,takentogether,theparallelismofthestress–responsefindingsisnotable(Fig.2)andsuggestiveofanensemblerole.Thefirstthreewereconductedinasinglecohortofwomen85–94yearsofageparticipatinginsubstudiesoftheWomen’sHealthandAgingStudy(WHAS)II.Fig.2:Stimulus–responseexperimentsinolderadultsmeasuringphysiologicalresponsetominorstressorsincommunity-dwellingolderadultswhowerecharacterizedasnonfrail,prefrailorfrail.Pilotstudiesina–cwereconductedincommunity-dwellingwomen85–94yearsofageinWHASII.Thestudyindwasofmaleandfemalevolunteersages70andolder,includingWHASIIparticipants.a,Glucose(left)andinsulin(right)dynamicsduringOGTTbyphysicalfrailtystatus;dataareshownasthemean ± standarderror(s.e.;errorbars)forglucoseandinsulinvaluesat0,30,60,120and180 minutesafteradministrationofaglucoseloadof75 gbyfrailtystatus.ThePvaluesforcomparisonsoftheareaunderthecurve(AUC)were0.82(prefrailversusnonfrail)and0.02(frailversusnonfrail)forglucoseand0.26(nonfrailversusprefrail)and0.27(nonfrailversusfrail)forinsulin33.Panelreproducedfromref.21.b,Timeto95%recoveryofPCrlevelsaftermildexercise,calculatedas3/k,wherekistherateconstantofthemonoexponentialfit.ThePvaluesforcomparisonsofthegroupmeansinthispilotwere0.57(prefrailversusnonfrail)and0.22(frailversusnonfrail),likelyowingtothesamplesizeof30(ref.50).Panelreproducedfromref.50.c,DHEAresponsetoACTHstimulationtestbyfrailtystatus.Dataareshownasthemean ± s.e.(errorbars)forDHEAvaluesat0,30,60and120 minutesafteradministrationof250 μgACTH.ThePvalueforaglobaltestofdifferenceinmeanbyfrailtystatuswas0.86(ref.63)inthispilotstudyof51women.Panelreproducedfromref.52.d,Responsetoinfluenzavaccinationinpeople70yearsandolder;dataareshownasthegeometricmeanHIantibodytiter(GMT)ratiostoH1N1,H3N2andBstrainsinallstudyparticipantsandbyfrailtystatus(left)andtherateofILIandlaboratory-confirmedinfluenzainfection(right)duringthepost-vaccinationseason.ThePvaluesfortheGMTratios(0.04,0.01and0.05forH1N1,H3N2andBstrains,respectively)wereobtainedfromlinearregressionforastepwisetrendofdecreasefromnonfrailtoprefrailtophysicallyfrailindividuals,adjustedforage;thecorrespondingPvaluesforILI(0.005)andinfluenzainfection(0.03)rateswereobtainedfromlogisticregressionanalysisforastepwisetrendofincreasefromnonfrailtoprefrailtofrailindividuals,adjustedforage53.Panelreproducedfromref.53.Physicalfrailtycriteria:0,nonfrail;1–2,prefrail;3–5,frail1.FullsizeimageMetabolicsystemandglucosemetabolismWomenwithoutdiabeteswereadministeredastandardoralglucosetolerancetest(OGTT;n = 73)(Fig.2a).Therewaslittledistinctioninmeanbaselineglucoseorinsulinlevelsbyfrailtystatus.Followingstresschallenge,physicallyfrailwomenshowedanexaggeratedriseinbothmeasures,togetherwithprolongedresponses,incomparisontoprefrailandnonfrailwomen,whenadjustingforage21.Overall,themeanpeakglucoselevelwasincreasedbymorethan30%inthefrailgroupversustheothertwogroups,andthemeanpeakinsulinlevelwasincreasedby75%.Further,therewasadysregulatedresponseoftheappetite-stimulatinghormoneghrelinintheOGTT,withphysicallyfrailwomenmaintaininglowerlevelsthroughoutthe2-hourexperimentincomparisontononfrailwomen24.Notably,only27%ofallstudyparticipantshadanormalfastingglucoselevel(<100 mg dl–1),whereas48%hadprediabetes(2-hourglucose<140 mg dl–1)and25%hadundiagnoseddiabetes.Dysregulationofglucoseappearedtobethenormamongthesewomen,buttheresponsetochallengewasmarkedlymoredysregulatedamongthefrailsubset.SkeletalmusclesystemWomen(n = 30)engagedinisometricexerciseofthedominantlowerextremityfor30 secondswithinamagneticresonancespectroscopyimagingunit(Fig.2b).OxidativephosphorylationinbufferingATPlevelsinskeletalmusclewasassessed:thephosphocreatine(PCr)recoverykineticsweresloweramongfrailwomen(189 ± 20 seconds)thanamongprefrail(152 ± 23 seconds)andnonfrail(132 ± 32 seconds)women50.Thus,thefrailandprefrailgroupshadPCrrecoverythatwas57and20 secondsslower,respectively,thanforthenonfrailgroup.Arecentlypublishedstudyshowsrapidenergeticdeclineintheexercisedskeletalmuscleoffrailcomparedtononfrailolderadults,furtherdemonstratingstress-inducedenergydysfunctioninfrailty51.Stress-responsesystem,HPAaxisAstandardadrenocorticotropichormone(ACTH)stimulationtestwith250 µgACTHwasperformedin51womenwhowerenottakingcorticosteroids(Fig.2c).Dehydroepiandrosterone(DHEA)responseswereexaminedat0,30,60and120 minutesafteradministrationofACTH.Pre-andpost-ACTHstimulatedDHEAlevelsdidnotdifferstatisticallybyfrailtystatus;however,thedose–responsecurvessuggesteddivergenceafterstimulation,withamoreexaggeratedDHEAresponsewithincreasingphysicalfrailtyandstepwiseincreaseddysregulationacrossnonfrail,prefrailandfrailindividuals,inlinewithprogressivelyinadequatenegativefeedback52.Stress-responsesystem,innateimmunesystemandactiveimmunityInmaleandfemalevolunteersaged70yearsandolder(n = 71,includingsomeindividualsfromWHASII),frailtywasassociatedwithsignificantlyimpairedresponsetotrivalentinactivatedinfluenzavaccine,asmeasuredbyvaccine-inducedstrain-specifichemagglutinin-inactivating(HI)antibodytiters,whenadjustingforage(Fig.2d).Ratesofinfluenza-likeillness(ILI)andlaboratory-confirmedinfluenzainfectionshowedstepwiseincreasesfromnonfrailtoprefrailtophysicallyfrailindividuals53.Thus,frailtystatusmayidentifythoselesslikelytorespondtoinfluenzavaccinationandathigherriskofseasonalinfluenzaanditscomplicationsdespitevaccination.Stress-responsesystem,autonomicnervoussystemfunctionIrishparticipantsaged60yearsandolder(n = 442)underwentalying-to-standingorthostaticbloodpressure(BP)testwithconcurrentBPmonitoringbyfingercuff.Physicalfrailtyprevalencewasenrichedamongthoseexperiencingorthostatichypotension(initialcriterion)inresponsetothetest(14.1%versus5.4%fornonfrailindividuals)54.Accordingly,boththestatic(seeabove)anddynamicresponsecapacityofparallelphysiologicalsystemshavebeenlinkedtophysicalfrailty,withsystemsthatmayappearnormalinsteadystatedemonstratingdysregulationwhenchallenged.Thesefindingssupporttheconceptofphysicalfrailtyasastatecharacterizedbycompromisedresponsivenesstostressorstimulusinaffectedsystems(Fig.3).Thisisconsistentwithcomplexsystemstheoryandalsomaycontributetounderstandingofthehighaging-relatedvulnerabilityofsomeolderadultstostressorssuchasCOVID-19infection.Fig.3:Hypothesizednaturalhistoryoffrailty:deteriorationofphysiologicalintegrityinresponsetorepeatedstressorsandnaturalaging.Thephysiologicalintegrityofthesystemisdefinedbythecapacitytomaintainahealthyequilibriuminthefaceofstressors.Therollingballrepresentsstress-responsedynamics.Thelevelofphysiologicalintegrityistheorizedtobeafunctionofthereservesrepresentedbyboththedepthofeachbowlandtheradiusofthecurvature,withgreaterdepthandcurvaturerepresentinggreaterreserveandresiliencetostressors.Timetorecoveryafterastressorisameasureofthisresilience(forexample,seeFig.2aforglucoserecoverycurvesintheOGTTshowingthatfrailolderadultshaveamuchslowertimetorecovery).Bothepisodic(forexample,stroke,fall)andchronic(forexample,chronicinflammation)insultsarehypothesizedtodecreasetheintegrityofthesystem,thusdegradingtheabilitytoreturntoequilibriumandtorespondtosubsequentstressors.Progressionoffrailtyconsistsofaseriesofcriticaltransitions(denotedbyasterisks)betweenstatesofequilibriumofdecreasingintegrity;ataparticularcriticaltransitionpoint,thesystembecomesoverwhelmedandcannolongerharnesstheresourcesneededtomaintainintegrity,resultingintheclinicalphenotypeofphysicalfrailty.Reproducedfromref.7.FullsizeimageWeakenedinteractionsandfeedbackbetweensystemsunderpinningphysiologicalvulnerabilityoffrailtyAnotableaspectofthethreephysiologicalsystemsdominantlydysregulatedinphysicalfrailtyisthattheirfunctionsinteractwiththoseoftheothersystemsinfeedforwardorfeedbackeffects55,56,57.AhealthystateinvolvesthesystemsinFig.1interactingwitheachotheroptimally58,59,60,61,62.Forexample,immunesystem-generatedcytokinesdrivearobustresponsetoaninfectionthroughinflammatorycytokinesandshutthatsameresponsedownthroughanti-inflammatorycytokines63.However,iftheinflammatorysignalingcontinueschronically,inafeedforwardway,asisobservedinphysicalfrailty,itimpactsothersystemsandtissueswithresultsincludingalteredHPAaxisactivityandenergymetabolismbypromotionofinsulinresistanceandglucoseintoleranceaswellasdecreasedmitochondrialenergyproduction,alteredredbloodcellformationandskeletalmuscledecline58,64,65.Bothinflammatorysignalingandskeletalmuscleinactivityamplifycortisol,theproductoftheHPAaxis,tomorerapidlycatabolizeskeletalmuscle.Cortisolnormallytampsdowninflammatorysignaling66.However,inthefaceofchronicityandloweredabilitytoblockinflammatorysignaling,cortisolcanimpactenergymetabolismviainsulinresistance64,66,67.Theseexamplesoffersupportfordysregulationofthefeedbackloopsbetweencoresystemsassociatedwiththephysicallyfrailstateandforthenetworkednatureofphysiologicaldysregulation,inlinewithacomplexdynamicalsystem(Boxes1and2).Theseobservationsalsosupportdysregulatedcommunicationandinformationprocessingasacorefeatureofphysicalfrailty.Thereisfurtherevidencethatfeedbackrelationshipsamongthesesystemsarealteredasaconsequenceofcumulativestressoverthelifecourse,calledallostaticload,compromisingtheabilityoftheintegratedphysiologicalsystemstoadapt,termedallostasis57.Physicalfrailtymaybeamoreseverestateofallostaticcompromise68,69,propelledbyagingprocessesaswellasstressors.However,weshouldbecautiousininterpretingthedysregulatedlinksbetweensystemsasautomaticallyimplyingacascadeofdysregulation.Contrarytothewidespreadassumptionthatagingisapurelydetrimentalprocess,therearemanyaspectsofaging—notably,muchofimmunosenescence—thatrepresentadaptationseithertootherdetrimentalprocessesortochangingneedsatdifferentages70,71.Thisraisesthespeculationthatthefrailstatemightitselfbeadaptive,awayofstavingoffdeathorovertdiseasestates.EvidencefornonlinearityintherelationshipbetweenthenumberofdysregulatedsystemsandfrailtyThedynamicsofcomplexsystemsgenerallyrenderthemnonlinear(Box1),wherethemultipleinputsactnon-additively,exhibitingsynergisticorantagonisticeffects.Ifphysicalfrailtyisastatethatresultsfromathresholdlevelofdysregulationofthecomplexdynamicalsystemofhumanhomeostasis,thetransitionfromastateofstandardfunctioningtoacriticallydysregulatedstatewouldtheoreticallybeexpectedtobenonlinear.Thatis,asthenumberofsystemsmalfunctioningincreases,theriskoffrailtyescalatesnonlinearly.Thepreliminaryevidenceisconsistentwiththeory.Apopulation-basedstudyofwomen70–80yearsofageevaluatedthehypothesesthatdysregulationofmultiplephysiologicalsystemsisassociatedwiththeriskoffrailty,thatnosinglesystemexplainsthisandthatthestrengthofassociationacceleratesinanonlinearfashionwithincreasingnumbersofdysregulatedsystems72.Assessingeightmarkersfromdifferentphysiologicalsystemsindependentlyrelatedtophysicalfrailty((inflammation(IL-6 > 4.6pg ml–1),anemia(hemoglobin 6.5%),micronutrientdeficiencies(≥2),adiposity(tricepsskinfoldthickness 31.9 s)),physicalfrailtywasfoundtobeassociatedwithanincreasednumberofimpairedsystemmarkers,independentlyofassociationswithindividualbiomarkers.Theoddsratioforthosewith1–2abnormalsystemswas4.8(comparedtothosewithnoabnormalsystems),increasingto11-and26-fold-increasedrisk,respectively,forthosewith3–4and5ormoresystemsatabnormallevels(95%confidenceintervalsexclude1).Comorbiddiseaseswereassociatedwithphysicalfrailty,independentlyofthenumberofabnormalsystems.Commensurately,therewasanonlinearincreaseinfrailtyprevalencewithincreasingnumbersofabnormalphysiologicalsystems(Fig.4).ThesefindingsfromtheWHASIandIIstudy72haverecentlybeenreplicatedinanadditionalpopulationfromQuebec69.Fig.4:Nonlinearincreaseintheprevalenceofphysicalfrailtybynumberofdysregulatedphysiologicalsystemsatbaselineamongwomenaged70–79yearsparticipatingintheWHASIandIIstudies(n = 704).Thefilleddotsconnectedbythesolidlinesegmentsareprevalenceestimatescorrespondingtothenumberofdysregulatedsystems,basedonageneralizedlinearmodelwithabinomialfamilydistributionforbeingfrail(versusnonfrail)andidentitylinkwhiletreatingthenumberofdysregulatedsystemsasdummyvariables.Theverticalbarsrepresent95%confidenceintervalsfortheprevalenceestimates.Whenfittingaquadraticequationtothecurve,thequadratictermwasstatisticallysignificant,atP = 0.027.Thedashedlineshowsthatalinearmodeldoesnotfittheincreaseinprevalenceofphysicalfrailty.Adaptedfromref.72.FullsizeimageThefactthatmultisystemdecrements,notanysubgroups,weresignificantlyassociatedwithfrailtyindicatesthatamultiplicityofphysiologicalabnormalitiesiswhatisofimport,morethananyonespecificsystem,inphysicalfrailty.Thisspeakstothediffusenessordistributednatureoftheunderlyingprocess,akeypredictionforanemergentpropertyinacomplexsystem,andoffersatheoreticalbasisforthenullfindingsfromnumeroussingle-hormonereplacementtrials73,74,75:replacingadefectivepartdoesnotsolvetheproblemofthedysregulatedwhole.Insummary,thecombinationofmultisystemdysregulationandnonlinearityintherelationshipwithphysicalfrailtysupportscomplexdynamicalsystemdysregulationasadistinctpathophysiologyassociatedwiththeclinicalpresentation.EvidenceforcriticaltransitionsinphysiologyandinclinicalseverityCriticaltransitionsareabruptchangesinthestateofcomplexdynamicalsystemsresultingfromtheinternaldynamicsofthesystem(Boxes1and2).Theabovefindingsonnonlinearitysupportthehypothesisthatfrailtyresultsfromacriticallevelofdysregulationofacomplexdynamicalsystem,resultinginacriticaltransitiontoanewemergentstate76,77,78,inthiscaseoneoflowerfunction.Thisisconsistentwithpriorreportsthatindividualsenescentprocessesdisplayquasilinearpropertiesofdeclineacrossthelifecoursebuttheiraggregateeffectisnonlinear79.Thereareatleastthreepotentialtypesofcriticaltransitionsassociatedwithphysicalfrailty:transitiontoaphysiologicallyvulnerablestate,transitiontoaclinicallyapparentphenotypeandtransitiontodisabilityanddeath.Figure3conceptuallyexemplifiesthesequenceofcriticaltransitionsduetoage-relatedprogressivedeteriorationinphysiologicalintegritythatresultsinanimpairedabilitytorespondtostressorsandindistinctclinicalstates(forexample,prefrailandfrailstates,death).Theabovedataonstimulus–responseexperiments(Fig.2)andonnonlinearity(Fig.4)agreewiththiscriticaltransitiontheory.AsinFig.3,therearecriticalage-relatedtransitionsinphysiologicalintegritythatunderlietransitionsinclinicalstates.Withinclinicalstates,thereisalsoevidenceoftransitiondynamics.Forexample,thereisahierarchyintheemergenceofcriteriainthephenotypeofphysicalfrailty(Fig.1),startingwithmuscleweakness,slownessandlowphysicalactivity;exhaustion(orfatigue)andweightlossaregenerallythetippingpointsfortheonsetofphysicalfrailty80.Thecriticaltransitiontophysicalfrailtyportendsacompromisedstressresponse(Fig.2)andriskforadverseoutcomes.Finally,theevidencetodateraisesthequestionofwhetherthemostseveremanifestationsofphysicalfrailtyareacriticaltransitionpointtofurtherdeclineanddeath.Theevidenceisthatthereisasharpescalationinriskofadverseoutcomesofdisabilityanddeathwhenindividualsmanifestthephenotypeofphysicalfrailty1(Fig.1),andmeetingallfivephysicalfrailtycriteriasignalsthebeginningofatransitiontowardapointofnoreturn,beyondwhichtheprocessbecomesirreversibleanddeathbecomesimminent81.PotentialdriversofthecomplexsystemdysregulationunderlyingphysicalfrailtyTheevidencethatmultiplesystemsaredysregulatedinparallelinphysicalfrailtyraisesthequestionofwhetherthereisasharedbiologicaldriverofthisparalleldysregulationandtheaggregateeffects.Figure1describesaconceptualframeworkinwhichmolecularchangesdrivephysiologicalchangesinenergy,musculoskeletalandstress-responsesystems.Itisplausiblethatcellularandmolecularhallmarksofagingmaycontributetophysicalfrailty,includinggenomicinstability,telomereattrition,epigeneticalterations,proteostasisloss,dysregulatednutrientsensing,mitochondrialdysfunction,cellularsenescence,stemcellexhaustionandalteredintercellularcommunication18.Thealtereddynamicalphysiologicalsystemspointtoatleastthreeofthesehallmarks,intercellularcommunication,cellularsenescenceandmitochondrialdysfunction,aspotentialdriversofphysicalfrailty.Forcellularsenescence,thisplausibilityreferencesacommonfeatureofphysicalfrailty:highlevelsofinflammatorymediators(chronicinflammation),whichareknowntobeheavilysecretedfromsenescentcelltypes82.Thereisalsodirectevidencethatcellularsenescenceandmitochondrialfunctionhavearoleinphysicalfrailty.Senescentcellsinjectedintoyoungermiceaccelerateatrajectorytowardphysicalfrailty,whilesenolytictreatmentreversesthis83.Evidenceofmitochondrialenergyproductiondeficitsexistsinbothhumansandamousemodeloffrailty28,84.Inhumans,PCrrecoverytime,ameasureofmitochondrialoxidativephosphorylation,isreduced50,51.Inamousemodeloffrailtyderivedthroughchronicinflammation,skeletalmuscleATPkineticsareimpairedanddecreasedmitochondrialdegradationinskeletalmusclehasbeenidentified28,85.Finally,indirectevidencecomesfromstudiesdemonstratingthatmitochondrialdysfunctionishighlyrelatedtoglucoseintoleranceatatissuelevel86,whichisassociatedinhumanswithphysicalfrailty21,51.Lookingthroughadifferentlensatthedataalreadypresented,thereisnowearlyevidencesuggestingthataging-relatedenergydysregulationisanunderlyingdriverofgeneralizedphysiologicaldysregulationandtheemergenceofafrailstate.Considerthatthephenotypeofphysicalfrailtyisassociatedwithcompromiseincellularrepletionofenergy(Fig.2b)50,withdysregulatedglucosemetabolismaffectingenergyavailability,insulinresistanceandglucoseregulation(Fig.2a),andwithenergyintakeviatheimpactofghrelinonappetiteregulation21,24.Skeletalmuscleenergeticdepletionandcataboliteaccumulationhavebeenshowntobeadeterminantoffatigue,orexhaustion,ahallmarkmanifestationofphysicalfrailty1,20,87,andsarcopeniaisassociatedwithdecreasedefficiencyofmuscularenergyutilization28,88.Additionally,frailolderadultsexhibitdysregulationoftherestingmetabolicrate,withgreatervariancethanthosewhoarenotfrailorprefrail89.Further,inarecentstudyinfrailmice,cellularenergeticsinvolvingmitochondrialenergyproductionandoxidativestresswerefoundtobecentraltothestressresponse28,90.MitochondrialdysfunctionswereshowntoaltertheHPAaxis,sympatheticadrenal–medullaryactivationandcatecholaminelevels,theinflammatorycytokineIL-6,circulatingmetabolitesandhippocampalgeneexpressionresponsestostress91.Inolderadults,therearealsostrongassociationsofalteredmitochondrialfunctionandgeneexpressionwithphysicalfrailty29,30.Finally,theapriorihypothesisaboutthephenotypeoffrailtyitselfwasthatthefivecriteriaforfrailtyconstitutedasetofmarkersconnectedinaviciouscycleofapparentdysregulatedenergetics1,92.Onthebasisofthisevidence,wehypothesizethatnotonlydoenergeticsunderliethehealthyfunctioningofthehumanorganismbutenergeticimbalanceisakeydriverofphysicalfrailty—andoftheclinicalviciouscycleofthephenotypeoffrailtyanditsadverseoutcomes(Fig.1).Livingorganismscanbeviewedasthermodynamicmachinesefficientlyexchangingenergywiththeirenvironment.Eventually,theenergyexchangeandutilizationbecomecriticallysuboptimal,owingtoaging,stressanddisuse.Thelesstheenergyflowsthroughthesystem(duetodecreasedactivity),thegreaterthediscordbetweenstructureandfunction,aswellasbetweentheorganismanditsenvironment.Withenergeticimbalance,thesystemshrinksandisdriventoafrailstate,withaseverelycompromisedabilitytowithstandstressors.Notably,ifenergycanexplainthesimultaneousandparalleldysregulationsanddiminishedinteractionswithinandbetweensystems,physicalactivitycouldbeconsideredasamodelinterventiontopreventthefrayedcomplexdynamicalsystemunderlyingfrailty93,asitupregulatesallrelatedsystemsandincreasestheenergyflowthroughthe‘entire’organism,makingthethermodynamicsoflifefavorableforthriving.WalterBortzputsthisbeautifully:“everycell,everyorgan,everysystemofthebodyisbeholdentotheenergeticimperative.Webecomewhatwedo.Frailtyiswhathappenswhenwedon’t”94.DiscussionWehavesummarizedtheaboveevidencesupportingthethesisthatphysicalfrailtyarisesfromcriticaldysregulationofacomplexdynamicalsystem,whoseprimarycomponentsarehighlightedinFig.1,andthatitistheoutcomeofacriticaltransitiontoadistinctstateofsuboptimalfunctioningandhighriskwhenstressed.Thisframeworkchangesthesearchforsuccessfulpreventionortreatment.First,criticaltransitionsnecessitateearlyaction,beforethetransitionisimminent.Second,thisapproachcanexplainwhyreplenishmentofasingle-systemdeficithasnotbeenfruitfulinfrailtypreventionandtreatmentoffrailty(whichmayrequire,instead,tobemosteffective)interventionstotuneandoptimizephysiologyasawhole.Aggregatemultisystemfitnesstomaintainhomeostasisandresilienceandtopreventphysicalfrailtylikelyrequiresmacro-levelinterventionsthatarenon-reductionist—forexample,interventionstoimprovephysicalactivityorsocialengagement;thelatter,apartfromcontributingtopsychologicalwell-being,alsocanincreasephysicalandcognitiveactivity95,96,97.PhysicalactivityimprovesfunctionateverylevelofFig.1,includingtheelementsofthephenotypeandeachofthecoresystemsinthehubofphysiologicalfrailty,andupregulatesmitochondrialfunction,simultaneouslymodulatingmultipleinterconnectedregulatorysystems93.Thereisstrongevidencethatfrailtyisbothpreventedandamelioratedbyphysicalactivity,withorwithoutaMediterraneandietorincreasedproteinintake98,99,100,101.Thesemodelinterventionstodatearenonpharmacological,behavioralones,emphasizingthepotentialforpreventionthroughacomplexsystemsapproach.Twoothermajortypesofinterventionareusedtoamelioratefrailty:individuallytailoredgeriatriccaremodelsandpharmacologicalinterventions.Individuallytailoredmulticomponentgeriatriccaremodelsprescribeinterventionsbasedonapatient’sspecificimpairments.Theresultssofarhavebeenmixed87,102.Pharmacologicalinterventions,ontheotherhand,havebeenfocusedonsinglesystemswithtwoprimarytargets:inflammationandanabolichormones.Thereisnodirectevidenceofefficacyofpharmacologicalinterventionsonphysicalfrailtybeyondphenotypiccomponentssuchasmusclestrength,bodyweightandfatigue103.Interventionsdesignedtotargetthephenotypiccomponentsoffrailtyorasingle-system-focusedonedeficit/onetherapymodelinthecaseofhormonaltherapywilllikelybeineffectiveinalleviatingtherootcause(s)offrailty104,105.Rather,pharmacologytoimprovemultiplesystemssimultaneouslyand/orindividuallytailoredpharmacologyviaprecisionmedicinetopersonalizehowequilibriumisrestoredmayberequired.Untilthattime,directclinicalinterventionneedstobettermanagefrailolderadultsthroughminimizingaggravatingfactorssuchaspolypharmacy,environmentalhazards(forexample,fallprevention)anddiscontinuitiesofcarewhileoptimizinghealth-andresilience-producingbehaviorssuchasphysicalactivity.Forallpotentialfrailtyandfunctionalperformanceassessments,itiscriticallyimportanttoassesstheseoutcomemeasuresinbothobservationalandinterventionalclinicaltrials.Morebroadly,understandingfrailtyastheoutcomeofbothlifecoursestressorsresultinginallostaticload57andage-relateddysregulationofourcomplexdynamicalsymphonycouldofferaparadigmshiftinthinking.TheconceptsinFig.3mayofferawaytoworkinreversetounderstandthefabricofhealthandrobustnessand,then,forwardtounderstandhowthefrayingofthisfabricisinitiallycompensatedbyresiliencebutprogressionresultsintransitiontoastateoffrailty.Conceptualizingfrailty—andhealth—asarisingfromourintertwineddynamicalphysiologyisaprototypicallygerontologicalapproach,takingaholisticviewofthewell-beingofolderadultsandusingawidearsenaltopromotephysical,mentalandemotionalhealth,meaningandqualityoflife.Theexistingworkisstillearly,however.Webrieflyindicateheretheresearchneedsderivingfromthisframework.FurtheringthecurrentevidenceTheevidenceonstress-responseexperimentscitedabovelargelyresultedfrompilotstudies.Confirmatorystudiesareneededthatelicitresponsesinmultiplesystemswithinindividualsandimplementfinerrepeatedmeasurementofresponsecurvesoverlongerrecoverytimes,withasufficientnumberofparticipantstoallowtheparametersgoverningfitnessandinteractionsofthephysiologicalensembletoberelatedtofrailty.Studiesofmultisystemdynamicscouldthenprobetheincrementaleffectsofcombineddysregulations,characterizingthephysiotypeandphenotypeofphysicalfrailtythatjointlymakeuptheclinicalsyndrome.Further,longitudinalresearchisneededtoelucidatetheimplicationsofchangesinphysiologicalfitnessforfrailtyincidenceandprogression—particularlyaddressingmultisystemfunction.Theevidencefornonlinearityreportedaboveisintriguingbutnotdefinitive.Studiesareneededthatdeliberatelyelicitmeasuresinthecollectionofphysiologicalsystemsandsubsystemsthathavebeenmoststronglyimplicatedinfrailty(asopposedtousingavailablemeasuresinanexistingstudy)andthatdosoinsufficientbreadthanddepththatcriticalinflectionsintherelationshipofdysregulationburdenwithfrailtyriskcanbedetected.High-priorityresearchfrontiersAssumingaccomplishmentofthenext-stagegoalsdescribedabove,canwedeterminewhetherthereisaspecificbiologicaldriverofthemultisystemphysiologicaldysregulationofphysicalfrailtythatcouldbetargetedwithpreventionortreatmentstrategies?Givenevidencealreadydeveloped,energymetabolismand/ordysregulatedactivationoftheinnateimmunesystemrequirefurtherstudy.Second,developmentoffrailty-relatedphysiologicalmeasuresthatbetterpredictimpendingcriticaltransitions,includingtoprefrailty,mayacceleratethecreationofeffectiveprimaryandsecondaryprevention,aswellastreatment,strategies.Third,researchisneededtobetterdistinguishphysicalfrailtyandchronicdisease.Thelikelihoodthatthesecoexistishigh,as,evenifnotetiologicallyrelated,bothincreaseinprevalencewithage.Further,somechronicdiseasessuchascongestiveheartfailuremayhavefeaturesoffatigue,weaknessandlowactivity,thusresemblingphysicalfrailtyphenotypiccriteria.Theterm‘secondaryfrailty’hasbeenusedtodescribesuchanoverlappingphenotype,incontrastto‘primaryfrailty’,whichdenotesauniqueage-relatedclinicalentitywithadistinctpathophysiology106.Suchsecondaryfrailtyappearstobeaconsequenceofcatabolicchronicdiseases107.Futurestudiesoffrailtyinpersonswithdiseaseneedtodemonstratethatdifferencesinfunctionandriskbetweenfrailandnonfrailindividualsdonotmerelyreflecttheseverityofdisease-specificpathology.Itmaybe,then,thatcontinuedrefinementoftheclinicalphenotypetodistinguishitclearlyfromsignsandsymptomsofotherspecificdiseaseswillbeneeded.Further,inthecaseofsecondaryfrailty,itremainstobedeterminedwhetherinterventionstargetingphysicalfrailty-relatedmultisystemdysregulationaremoreorlesseffectivethantreatmentofdisease-specificetiology.Finally,interventionstrategiestocreatehealthinagingandpreventfrailtycouldwellbuildonconceptsofcompromisedhomeostasis,robustnessandresiliency,aswellasphysicalfrailty,tocontributetothedevelopmentofamoreunifiedtheoryofagingandhealth.Wehypothesizethatrobustness,resilienceandfrailtyreflectdifferentpointsonacontinuumofphysiologicalfitnessandreserve—robustnesstotheeffectsofmoderatestressors,typicallyseeninhealthyyoungeradults;resilience,oratemporaryimpairmentfollowedbyrecovery,seeninlesshealthyyoungeradultsandhealthierolderadults;andfrailty,seeninolderadultswhosephysiologicalfitnessandreservehavebeendepletedpastacriticalthreshold,leavingthemvulnerabletosustainedadverseoutcomes.Thissuggestsanordering:frailtyimplieslackofresilienceandrobustness;conversely,robustnessimpliesresilienceandnonfrailty.Thistheoryastoacontinuumremainstobedemonstrated.Thefindingspresentedheremayhaveimplicationsbeyondfrailty,suggestingthatanarchitectureofagingcanbedevelopedusingtheblueprintofcomplexsystems.ThisenterprisewouldbeanalogoustothatoftheSantaFeInstituteanditsnetworkofresearcherswhohavebeenpursuingarevolutioninsciencebasedoncomplexsystemsthinking108.Webelievethatsuchanapproachmayultimatelyunifyamultitudeofagingconceptsincludingfrailty,homeostenosisandallostasistogetherwithrobustness,resilienceandhealth,aswellasrevealnovelinsights,suggestnewavenuesforresearchandlaunchaparadigmshiftfortheoptimizationofhealth. ReferencesFried,L.P.etal.Frailtyinolderadults:evidenceforaphenotype.J.Gerontol.ABiol.Sci.Med.Sci.56,M146–M157(2001).CAS  PubMed  GoogleScholar  Bandeen-Roche,K.etal.Phenotypeoffrailty:characterizationintheWomen’sHealthandAgingStudies.J.Gerontol.ABiol.Sci.Med.Sci.61,262–266(2006).PubMed  GoogleScholar  Mitnitski,A.B.etal.Accumulationofdeficitsasaproxymeasureofaging.Sci.WorldJ.1,323–336(2001).CAS  GoogleScholar  Rockwood,K.&Mitnitski,A.Frailtyinrelationtotheaccumulationofdeficits.J.Gerontol.ABiol.Sci.Med.Sci.62,722–727(2007).PubMed  GoogleScholar  Xue,Q.L.etal.Discrepancyinfrailtyidentification:movebeyondpredictivevalidity.J.Gerontol.ABiol.Sci.Med.Sci.75,387–393(2019).PubMedCentral  GoogleScholar  Kelaiditi,E.etal.Cognitivefrailty:rationalanddefinitionfroman(I.A.N.A./I.A.G.G.)internationalconsensusgroup.J.Nutr.HealthAging17,726–734(2013).CAS  PubMed  GoogleScholar  Xue,Q.L.,Buta,B.,Ma,L.N.,Ge,M.L.&Carlson,M.C.Integratingfrailtyandcognitivephenotypes:why,how,nowwhat?Curr.Geriatr.Rep.8,97–106(2019).PubMed  PubMedCentral  GoogleScholar  Bilotta,C.etal.FrailtysyndromediagnosedaccordingtotheStudyofOsteoporoticFracturescriteriaandmortalityinolderoutpatientssufferingfromAlzheimer’sdisease:aone-yearprospectivecohortstudy.AgingMent.Health16,273–280(2012).PubMed  GoogleScholar  Collard,R.M.,Boter,H.,Schoevers,R.A.&OudeVoshaar,R.C.Prevalenceoffrailtyincommunity-dwellingolderpersons:asystematicreview.J.Am.Geriatr.Soc.60,1487–1492(2012).PubMed  GoogleScholar  Siriwardhana,D.D.,Hardoon,S.,Rait,G.,Weerasinghe,M.C.&Walters,K.R.Prevalenceoffrailtyandprefrailtyamongcommunity-dwellingolderadultsinlow-incomeandmiddle-incomecountries:asystematicreviewandmeta-analysis.BMJOpen8,e018195(2018).PubMed  PubMedCentral  GoogleScholar  LlibreRodriguez,J.J.etal.TheprevalenceandcorrelatesoffrailtyinurbanandruralpopulationsinLatinAmerica,China,andIndia:a10/66population-basedsurvey.J.Am.Med.Dir.Assoc.19,287–295(2018).PubMed  GoogleScholar  Boyd,C.M.,Xue,Q.L.,Simpson,C.F.,Guralnik,J.M.&Fried,L.P.Frailty,hospitalization,andprogressionofdisabilityinacohortofdisabledolderwomen.Am.J.Med.118,1225–1231(2005).PubMed  GoogleScholar  Makary,M.A.etal.Frailtyasapredictorofsurgicaloutcomesinolderpatients.J.Am.Coll.Surg.210,901–908(2010).PubMed  GoogleScholar  Bandeen-Roche,K.etal.Principlesandissuesforphysicalfrailtymeasurementanditsclinicalapplication.J.Gerontol.ABiol.Sci.Med.Sci.75,1107–1112(2020).PubMed  GoogleScholar  Walston,J.etal.Movingfrailtytowardclinicalpractice:NIAintramuralfrailtysciencesymposiumsummary.J.Am.Geriatr.Soc.67,1559–1564(2019).PubMed  PubMedCentral  GoogleScholar  Fried,L.P.,Ferrucci,L.,Darer,J.,Williamson,J.D.&Anderson,G.Untanglingtheconceptsofdisability,frailty,andcomorbidity:implicationsforimprovedtargetingandcare.J.Gerontol.ABiol.Sci.Med.Sci.59,255–263(2004).PubMed  GoogleScholar  Shimokata,H.etal.Ageasindependentdeterminantofglucosetolerance.Diabetes40,44–51(1991).CAS  PubMed  GoogleScholar  Lopez-Otin,C.,Blasco,M.A.,Partridge,L.,Serrano,M.&Kroemer,G.Thehallmarksofaging.Cell153,1194–1217(2013).CAS  PubMed  PubMedCentral  GoogleScholar  Simon,H.A.Thearchitectureofcomplexity.Proc.Am.Philos.Soc.106,467–482(1962). GoogleScholar  Li,Q.etal.Homeostaticdysregulationproceedsinparallelinmultiplephysiologicalsystems.AgingCell14,1103–1112(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Kalyani,R.R.,Varadhan,R.,Weiss,C.O.,Fried,L.P.&Cappola,A.R.Frailtystatusandalteredglucose–insulindynamics.J.Gerontol.ABiol.Sci.Med.Sci.67,1300–1306(2012).PubMed  GoogleScholar  Blaum,C.S.etal.Ishyperglycemiaassociatedwithfrailtystatusinolderwomen?J.Am.Geriatr.Soc.57,840–847(2009).PubMed  PubMedCentral  GoogleScholar  Perez-Tasigchana,R.F.etal.Metabolicsyndromeandinsulinresistanceareassociatedwithfrailtyinolderadults:aprospectivecohortstudy.AgeAgeing46,807–812(2017).PubMed  GoogleScholar  Kalyani,R.R.,Varadhan,R.,Weiss,C.O.,Fried,L.P.&Cappola,A.R.Frailtystatusandaltereddynamicsofcirculatingenergymetabolismhormonesafteroralglucoseinolderwomen.J.Nutr.HealthAging16,679–686(2012).CAS  PubMed  GoogleScholar  Serra-Prat,M.,Palomera,E.,Clave,P.&Puig-Domingo,M.Effectofageandfrailtyonghrelinandcholecystokininresponsestoamealtest.Am.J.Clin.Nutr.89,1410–1417(2009).CAS  PubMed  GoogleScholar  Lana,A.,Valdés-Bécares,A.,Buño,A.,Rodríguez-Artalejo,F.&Lopez-Garcia,E.Serumleptinconcentrationisassociatedwithincidentfrailtyinolderadults.AgingDis.8,240–249(2017).PubMed  PubMedCentral  GoogleScholar  Ma,L.,Sha,G.,Zhang,Y.&Li,Y.ElevatedserumIL-6andadiponectinlevelsareassociatedwithfrailtyandphysicalfunctioninChineseolderadults.Clin.Interv.Aging13,2013–2020(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Akki,A.etal.SkeletalmuscleATPkineticsareimpairedinfrailmice.Age36,21–30(2014).CAS  PubMed  GoogleScholar  Ashar,F.N.etal.AssociationofmitochondrialDNAlevelswithfrailtyandall-causemortality.J.Mol.Med.93,177–186(2015).CAS  PubMed  GoogleScholar  Moore,A.Z.etal.PolymorphismsinthemitochondrialDNAcontrolregionandfrailtyinolderadults.PLoSONE5,e11069(2010).PubMed  PubMedCentral  GoogleScholar  VanEpps,P.etal.Frailtyhasastrongerassociationwithinflammationthanageinolderveterans.Immun.Ageing13,27(2016).PubMed  PubMedCentral  GoogleScholar  Bektas,A.,Schurman,S.H.,Sen,R.&Ferrucci,L.Aging,inflammationandtheenvironment.Exp.Gerontol.105,10–18(2018).CAS  PubMed  GoogleScholar  Leng,S.X.,Xue,Q.-L.,Tian,J.,Walston,J.D.&Fried,L.P.Inflammationandfrailtyinolderwomen.J.Am.Geriatr.Soc.55,864–871(2007).PubMed  GoogleScholar  Walston,J.etal.Frailtyandactivationoftheinflammationandcoagulationsystemswithandwithoutclinicalcomorbidities:resultsfromtheCardiovascularHealthStudy.Arch.Intern.Med.162,2333–2341(2002).PubMed  GoogleScholar  Laudisio,A.etal.Theassociationofolfactorydysfunction,frailty,andmortalityismediatedbyinflammation:resultsfromtheInCHIANTIStudy.J.Immunol.Res.2019,3128231(2019).PubMed  PubMedCentral  GoogleScholar  Ferrucci,L.&Fabbri,E.Inflammageing:chronicinflammationinageing,cardiovasculardisease,andfrailty.Nat.Rev.Cardiol.15,505–522(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Bandeen-Roche,K.,Walston,J.D.,Huang,Y.,Semba,R.D.&Ferrucci,L.Measuringsystemicinflammatoryregulationinolderadults:evidenceandutility.RejuvenationRes.12,403–410(2009).PubMed  PubMedCentral  GoogleScholar  Morrisette-Thomas,V.etal.Inflamm-agingdoesnotsimplyreflectincreasesinpro-inflammatorymarkers.Mech.AgeingDev.139,49–57(2014).CAS  PubMed  PubMedCentral  GoogleScholar  Soysal,P.etal.Inflammationandfrailtyintheelderly:asystematicreviewandmeta-analysis.AgeingRes.Rev.31,1–8(2016).CAS  PubMed  GoogleScholar  Varadhan,R.etal.Frailtyandimpairedcardiacautonomiccontrol:newinsightsfromprincipalcomponentsaggregationoftraditionalheartratevariabilityindices.J.Gerontol.ABiol.Sci.Med.Sci.64,682–687(2009).PubMed  GoogleScholar  Chaves,P.H.M.etal.Physiologicalcomplexityunderlyingheartratedynamicsandfrailtystatusincommunity-dwellingolderwomen.J.Am.Geriatr.Soc.56,1698–1703(2008).PubMed  PubMedCentral  GoogleScholar  Lipsitz,L.A.&Goldberger,A.L.Lossof‘complexity’andaging:potentialapplicationsoffractalsandchaostheorytosenescence.JAMA267,1806–1809(1992).CAS  PubMed  GoogleScholar  Romero-Ortuno,R.,Cogan,L.,Foran,T.,Kenny,R.A.&Fan,C.W.Continuousnoninvasiveorthostaticbloodpressuremeasurementsandtheirrelationshipwithorthostaticintolerance,falls,andfrailtyinolderpeople.J.Am.Geriatr.Soc.59,655–665(2011).PubMed  GoogleScholar  Parvaneh,S.etal.Regulationofcardiacautonomicnervoussystemcontrolacrossfrailtystatuses:asystematicreview.Gerontology62,3–15(2015).PubMed  PubMedCentral  GoogleScholar  Johar,H.etal.Blunteddiurnalcortisolpatternisassociatedwithfrailty:across-sectionalstudyof745participantsaged65to90years.J.Clin.Endocrinol.Metab.99,E464–E468(2014).CAS  PubMed  GoogleScholar  Varadhan,R.etal.Higherlevelsandblunteddiurnalvariationofcortisolinfrailolderwomen.J.Gerontol.ABiol.Sci.Med.Sci.63,190–195(2008).PubMed  GoogleScholar  Voznesensky,M.,Walsh,S.,Dauser,D.,Brindisi,J.&Kenny,A.M.Theassociationbetweendehydroepiandosteroneandfrailtyinoldermenandwomen.AgeAgeing38,401–406(2009).CAS  PubMed  PubMedCentral  GoogleScholar  Leng,S.X.etal.Serumlevelsofinsulin-likegrowthfactor-I(IGF-I)anddehydroepiandrosteronesulfate(DHEA-S),andtheirrelationshipswithseruminterleukin-6,inthegeriatricsyndromeoffrailty.AgingClin.Exp.Res.16,153–157(2004).CAS  PubMed  GoogleScholar  Varadhan,R.,Seplaki,C.L.,Xue,Q.L.,Bandeen-Roche,K.&Fried,L.P.Stimulus–responseparadigmforcharacterizingthelossofresilienceinhomeostaticregulationassociatedwithfrailty.Mech.AgeingDev.129,666–670(2008).CAS  PubMed  PubMedCentral  GoogleScholar  Varadhan,R.etal.Relationshipofphysicalfrailtytophosphocreatinerecoveryinmuscleaftermildexercisestressintheoldest-oldwomen.J.FrailtyAging8,162–168(2019).CAS  PubMed  GoogleScholar  Lewsey,S.C.etal.Exerciseintoleranceandrapidskeletalmuscleenergeticdeclineinhumanage-associatedfrailty.JCIInsight5,e141246(2020).PubMedCentral  GoogleScholar  Le,N.P.,Varadhan,R.,Fried,L.P.&Cappola,A.R.Cortisolanddehydroepiandrosteroneresponsetoadrenocorticotropichormoneandfrailtyinolderwomen.J.Gerontol.ABiol.Sci.Med.Sci.https://doi.org/10.1093/gerona/glaa134(2020).Yao,X.etal.Frailtyisassociatedwithimpairmentofvaccine-inducedantibodyresponseandincreaseinpost-vaccinationinfluenzainfectionincommunity-dwellingolderadults.Vaccine29,5015–5021(2011).PubMed  PubMedCentral  GoogleScholar  Wieling,W.,Krediet,C.T.P.,VanDijk,N.,Linzer,M.&Tschakovsky,M.E.Initialorthostatichypotension:reviewofaforgottencondition.Clin.Sci.112,157–165(2007). GoogleScholar  Kim,K.&Choe,H.K.Roleofhypothalamusinaginganditsunderlyingcellularmechanisms.Mech.AgeingDev.177,74–79(2019).CAS  PubMed  GoogleScholar  Nijhout,H.F.,Sadre-Marandi,F.,Best,J.&Reed,M.C.Systemsbiologyofphenotypicrobustnessandplasticity.Integr.Comp.Biol.57,171–184(2017).CAS  PubMed  GoogleScholar  McEwen,B.S.Stress,adaptation,anddisease:allostasisandallostaticload.Ann.N.Y.Acad.Sci.840,33–44(1998).CAS  PubMed  GoogleScholar  Bellavance,M.A.&Rivest,S.TheHPA–immuneaxisandtheimmunomodulatoryactionsofglucocorticoidsinthebrain.Front.Immunol.3,136(2014). GoogleScholar  Ménard,C.,Pfau,M.L.,Hodes,G.E.&Russo,S.J.Immuneandneuroendocrinemechanismsofstressvulnerabilityandresilience.Neuropsychopharmacology42,62–80(2017).PubMed  GoogleScholar  Braun,T.P.&Marks,D.L.Theregulationofmusclemassbyendogenousglucocorticoids.Front.Physiol.6,12(2015).PubMed  PubMedCentral  GoogleScholar  Pedersen,B.K.,Steensberg,A.&Schjerling,P.Exerciseandinterleukin-6.Curr.Opin.Hematol.8,137–141(2001).CAS  PubMed  GoogleScholar  Nance,D.M.&Sanders,V.M.Autonomicinnervationandregulationoftheimmunesystem(1987–2007).BrainBehav.Immun.21,736–745(2007).CAS  PubMed  PubMedCentral  GoogleScholar  Kobayashi,K.S.&Flavell,R.A.Shieldingthedouble-edgedsword:negativeregulationoftheinnateimmunesystem.J.LeukocyteBiol.75,428–433(2004).CAS  PubMed  GoogleScholar  Epstein,F.H.&Reichlin,S.Neuroendocrine–immuneinteractions.N.Engl.J.Med.329,1246–1253(1993). GoogleScholar  Richards,C.D.Innateimmunecytokines,fibroblastphenotypes,andregulationofextracellularmatrixinlung.J.InterferonCytokineRes.37,52–61(2017).CAS  PubMed  GoogleScholar  Straub,R.H.Interactionoftheendocrinesystemwithinflammation:afunctionofenergyandvolumeregulation.ArthritisRes.Ther.16,203(2014).PubMed  PubMedCentral  GoogleScholar  Galoyan,A.Neurochemistryofbrainneuroendocrineimmunesystem:signalmolecules.Neurochem.Res.25,1343–1355(2000).CAS  PubMed  GoogleScholar  Szanton,S.L.,Allen,J.K.,Seplaki,C.L.,Bandeen-Roche,K.&Fried,L.P.AllostaticloadandfrailtyintheWomen’sHealthandAgingStudies.Biol.Res.Nurs.10,248–256(2009).CAS  PubMed  GoogleScholar  Ghachem,A.etal.Evidencefromtwocohortsforthefrailtysyndromeasanemergentstateofparalleldysregulationinmultiplephysiologicalsystems.Biogerontologyhttps://doi.org/10.1007/s10522-020-09903-w(2020).LeCouteur,D.G.&Simpson,S.J.Adaptivesenectitude:theprolongevityeffectsofaging.J.Gerontol.ABiol.Sci.Med.Sci.66A,179–182(2011). GoogleScholar  Fulop,T.etal.Immunosenescenceandinflamm-agingastwosidesofthesamecoin:friendsorfoes?Front.Immunol.8,1960(2018).PubMed  PubMedCentral  GoogleScholar  Fried,L.P.etal.Nonlinearmultisystemphysiologicaldysregulationassociatedwithfrailtyinolderwomen:implicationsforetiologyandtreatment.J.Gerontol.ABiol.Sci.Med.Sci.64,1049–1057(2009).PubMed  GoogleScholar  Kenny,A.M.etal.Effectsoftransdermaltestosteroneonboneandmuscleinoldermenwithlowbioavailabletestosteronelevels,lowbonemass,andphysicalfrailty.J.Am.Geriatr.Soc.58,1134–1143(2010).PubMed  PubMedCentral  GoogleScholar  Muller,M.,vandenBeld,A.W.,vanderSchouw,Y.T.,Grobbee,D.E.&Lamberts,S.W.Effectsofdehydroepiandrosteroneandatamestanesupplementationonfrailtyinelderlymen.J.Clin.Endocrinol.Metab.91,3988–3991(2006).CAS  PubMed  GoogleScholar  Nelson,H.D.,Walker,M.,Zakher,B.&Mitchell,J.Menopausalhormonetherapyfortheprimarypreventionofchronicconditions:asystematicreviewtoupdatetheU.S.PreventiveServicesTaskForcerecommendations.Ann.Intern.Med.157,104–113(2012).PubMed  GoogleScholar  Scheffer,M.etal.Early-warningsignalsforcriticaltransitions.Nature461,53–59(2009).CAS  PubMed  GoogleScholar  Nakazato,Y.etal.Estimationofhomeostaticdysregulationandfrailtyusingbiomarkervariability:aprincipalcomponentanalysisofhemodialysispatients.Sci.Rep.10,10314(2020).CAS  PubMed  PubMedCentral  GoogleScholar  Gijzel,S.M.etal.Dynamicalresilienceindicatorsintimeseriesofself-ratedhealthcorrespondtofrailtylevelsinolderadults.J.Gerontol.ABiol.Sci.Med.Sci.72,991–996(2017).PubMed  GoogleScholar  Yates,F.E.Complexityofahumanbeing:changeswithage.Neurobiol.Aging23,17–19(2002).PubMed  GoogleScholar  Xue,Q.L.,Bandeen-Roche,K.,Varadhan,R.,Zhou,J.&Fried,L.P.InitialmanifestationsoffrailtycriteriaandthedevelopmentoffrailtyphenotypeintheWomen’sHealthandAgingStudyII.J.Gerontol.ABiol.Sci.Med.Sci.63,984–990(2008).PubMed  GoogleScholar  Xue,Q.L.,Bandeen-Roche,K.,Tian,J.,Kasper,J.D.&Fried,L.P.Progressionofphysicalfrailtyandtheriskofall-causemortality:isthereapointofnoreturn?J.Am.Geriatr.Soc.https://doi.org/10.1111/jgs.16976(2020).Kirkland,J.L.&Tchkonia,T.Cellularsenescence:atranslationalperspective.EBioMedicine21,21–28(2017).PubMed  PubMedCentral  GoogleScholar  Xu,M.etal.Senolyticsimprovephysicalfunctionandincreaselifespaninoldage.Nat.Med.24,1246–1256(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Andreux,P.A.etal.Mitochondrialfunctionisimpairedintheskeletalmuscleofpre-frailelderly.Sci.Rep.8,8548(2018).PubMed  PubMedCentral  GoogleScholar  Ko,F.etal.Impairedmitochondrialdegradationbyautophagyintheskeletalmuscleoftheagedfemaleinterleukin10nullmouse.Exp.Gerontol.73,23–27(2016).CAS  PubMed  GoogleScholar  Kim,J.A.,Wei,Y.&Sowers,J.R.Roleofmitochondrialdysfunctionininsulinresistance.Circ.Res.102,401–414(2008).CAS  PubMed  PubMedCentral  GoogleScholar  Mazya,A.L.,Garvin,P.&Ekdahl,A.W.Outpatientcomprehensivegeriatricassessment:effectsonfrailtyandmortalityinoldpeoplewithmultimorbidityandhighhealthcareutilization.AgingClin.Exp.Res.31,519–525(2019).PubMed  GoogleScholar  Allen,D.G.,Lamb,G.D.&Westerblad,H.Skeletalmusclefatigue:cellularmechanisms.Physiol.Rev.88,287–332(2008).CAS  PubMed  GoogleScholar  Weiss,C.O.,Cappola,A.R.,Varadhan,R.&Fried,L.P.Restingmetabolicrateinold-oldwomenwithandwithoutfrailty:variabilityandestimationofenergyrequirements.J.Am.Geriatr.Soc.60,1695–1700(2012).PubMed  PubMedCentral  GoogleScholar  Sahin,E.etal.Telomeredysfunctioninducesmetabolicandmitochondrialcompromise.Nature470,359–365(2011).CAS  PubMed  PubMedCentral  GoogleScholar  Picard,M.etal.Mitochondrialfunctionsmodulateneuroendocrine,metabolic,inflammatory,andtranscriptionalresponsestoacutepsychologicalstress.Proc.NatlAcad.Sci.USA112,E6614–E6623(2015).CAS  PubMed  GoogleScholar  Fried,L.P.&Walston,J.inPrinciplesofGeriatricMedicineandGerontology4thedn(edsHazzard,W.R.etal.)1387–1402(McGrawHill,1998).Fried,L.P.Interventionsforhumanfrailty:physicalactivityasamodel.ColdSpringHarb.Perspect.Med.6,a025916(2016).Bortz,W.Frailty.Mech.AgeingDev.129,680(2008).PubMed  GoogleScholar  Fried,L.P.etal.Asocialmodelforhealthpromotionforanagingpopulation:initialevidenceontheExperienceCorpsmodel.J.UrbanHealth81,64–78(2004).PubMed  PubMedCentral  GoogleScholar  Tan,E.J.etal.Thelong-termrelationshipbetweenhigh-intensityvolunteeringandphysicalactivityinolderAfricanAmericanwomen.J.Gerontol.BPsychol.Sci.Soc.Sci.64,304–311(2009).PubMed  GoogleScholar  Carlson,M.C.etal.Evidenceforneurocognitiveplasticityinat-riskolderadults:theExperienceCorpsprogram.J.Gerontol.ABiol.Sci.Med.Sci.64,1275–1282(2009).PubMed  GoogleScholar  Talegawkar,S.A.etal.AhigheradherencetoaMediterranean-styledietisinverselyassociatedwiththedevelopmentoffrailtyincommunity-dwellingelderlymenandwomen.J.Nutr.142,2161–2166(2012).CAS  PubMed  PubMedCentral  GoogleScholar  Deer,R.R.&Volpi,E.Proteinintakeandmusclefunctioninolderadults.Curr.Opin.Clin.Nutr.Metab.Care18,248–253(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Fiatarone,M.A.etal.Exercisetrainingandnutritionalsupplementationforphysicalfrailtyinveryelderlypeople.N.Engl.J.Med.330,1769–1775(1994).CAS  PubMed  GoogleScholar  Cesari,M.etal.Aphysicalactivityinterventiontotreatthefrailtysyndromeinolderpersons—resultsfromtheLIFE-Pstudy.J.Gerontol.ABiol.Sci.Med.Sci.70,216–222(2015).PubMed  GoogleScholar  Li,C.M.,Chen,C.Y.,Li,C.Y.,Wang,W.D.&Wu,S.C.Theeffectivenessofacomprehensivegeriatricassessmentinterventionprogramforfrailtyincommunity-dwellingolderpeople:arandomized,controlledtrial.Arch.Gerontol.Geriatr.50,S39–S42(2010).PubMed  GoogleScholar  Pazan,F.etal.Currentevidenceontheimpactofmedicationoptimizationorpharmacologicalinterventionsonfrailtyoraspectsoffrailty:asystematicreviewofrandomizedcontrolledtrials.Eur.J.Clin.Pharmacol.https://doi.org/10.1007/s00228-020-02951-8(2020).Cappola,A.R.,Maggio,M.&Ferrucci,L.Isresearchonhormonesandagingfinished?No!Juststarted!J.Gerontol.ABiol.Sci.Med.Sci.63,696–697(2008).PubMed  PubMedCentral  GoogleScholar  Ma,L.etal.Targeteddeletionofinterleukin-6inamousemodelofchronicinflammationdemonstratesopposingrolesinaging:benefitandharm.J.Gerontol.ABiol.Sci.Med.Sci.https://doi.org/10.1093/gerona/glaa156(2020).Fried,L.P.etal.Frombedsidetobench:researchagendaforfrailty.Sci.AgingKnowl.Environ.2005,pe24(2005). GoogleScholar  Chang,S.S.,Weiss,C.O.,Xue,Q.L.&Fried,L.P.Associationbetweeninflammatory-relateddiseaseburdenandfrailty:resultsfromtheWomen’sHealthandAgingStudies(WHAS)IandII.Arch.Gerontol.Geriatr.54,9–15(2012).PubMed  GoogleScholar  Krakauer,D.C.etal.WorldsHiddeninPlainSight:ThirtyYearsofComplexityThinkingattheSantaFeInstitute(SantaFeInstitutePress,2019).Sterling,P.Allostasis:amodelofpredictiveregulation.Physiol.Behav.106,5–15(2012).CAS  PubMed  GoogleScholar  Goldstein,J.Emergenceasaconstruct:historyandissues.Emergence1,49–72(1999). GoogleScholar  Taffet,G.E.inGeriatricMedicine:AnEvidence-BasedApproach(edsCassel,C.K.etal.)27–28(SpringerScience&BusinessMedia,2006).Csete,M.E.&Doyle,J.C.Reverseengineeringofbiologicalcomplexity.Science295,1664–1669(2002).CAS  PubMed  GoogleScholar  Strehler,B.L.&Mildvan,A.S.Generaltheoryofmortalityandaging.Science132,14–21(1960).CAS  PubMed  GoogleScholar  Varadhan,R.,Walston,J.D.&Bandeen-Roche,K.Canalinkbefoundbetweenphysicalresilienceandfrailtyinolderadultsbystudyingdynamicalsystems?J.Am.Geriatr.Soc.66,1455–1458(2018).PubMed  PubMedCentral  GoogleScholar  Kitano,H.Towardsatheoryofbiologicalrobustness.Mol.Syst.Biol.3,137(2007).PubMed  PubMedCentral  GoogleScholar  Kitano,H.Biologicalrobustness.Nat.Rev.Genet.5,826–837(2004).CAS  PubMed  GoogleScholar  Kitano,H.Systemsbiology:abriefoverview.Science295,1662–1664(2002).CAS  PubMed  GoogleScholar  Goldstein,J.Emergenceincomplexsystems.InTheSAGEHandbookofComplexityandManagement(edsAllen,P.etal.)65–78(SAGE,2011).Bar-Yam,Y.DynamicsofComplexSystems(Routledge,2019).Newmann,M.,Barabasi,A.L.&Watts,D.J.TheStructureandDynamicsofNetworks(PrincetonUniv.Press,2006).Holland,J.H.Complexadaptivesystems.Daedalus121,17–30(1992). GoogleScholar  DownloadreferencesAcknowledgementsWededicatethisarticletoDr.RichardSuzman,whoconsistentlyenvisionedandenabledtransformativeagingresearch.WearegratefulforsupportbytheNationalInstituteonAging,includingforWHASI(N01AG012112),WHASII(M01R000052),PathogenesisofPhysicalDisabilityinAgingWomen(MERITAward,R37AG019905)andthefrailty-focusedJohnsHopkinsUniversityClaudeD.PepperOlderAmericansIndependenceCenter(P30AG021334).WethankM.A.O’Brienforheroutstandingassistanceinpreparationofthemanuscript.AuthorinformationAuthornotesTheseauthorsjointlysupervisedthiswork:KarenBandeen-Roche,RaviVaradhan.AffiliationsColumbiaUniversityMailmanSchoolofPublicHealth,NewYork,NY,USALindaP.FriedGroupederecherchePRIMUS,DepartmentofFamilyMedicine,UniversitédeSherbrooke,QuebecCity,Quebec,CanadaAlanA.CohenJohnsHopkinsCenteronAgingandHealth,JohnsHopkinsUniversitySchoolofMedicine,Baltimore,MD,USAQian-LiXue & KarenBandeen-RocheSchoolofMedicine,JohnsHopkinsUniversity,Baltimore,MD,USAJeremyWalstonJohnsHopkinsBloombergSchoolofPublicHealth,JohnsHopkinsUniversity,Baltimore,MD,USAKarenBandeen-RocheDivisionofBiostatisticsandBioinformatics,SidneyKimmelComprehensiveCancerCenter,JohnsHopkinsUniversity,Baltimore,MD,USARaviVaradhanAuthorsLindaP.FriedViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarAlanA.CohenViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarQian-LiXueViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarJeremyWalstonViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarKarenBandeen-RocheViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarRaviVaradhanViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarCorrespondingauthorCorrespondenceto LindaP.Fried.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPeerreviewinformationNatureAgingthankstheanonymousreviewer(s)fortheircontributiontothepeerreviewofthiswork.Publisher’snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.RightsandpermissionsReprintsandPermissionsAboutthisarticleCitethisarticleFried,L.P.,Cohen,A.A.,Xue,QL.etal.Thephysicalfrailtysyndromeasatransitionfromhomeostaticsymphonytocacophony. NatAging1,36–46(2021).https://doi.org/10.1038/s43587-020-00017-zDownloadcitationReceived:16July2020Accepted:07December2020Published:14January2021IssueDate:January2021DOI:https://doi.org/10.1038/s43587-020-00017-zSharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative Furtherreading TowardsHealthyAgeing:UsingtheConceptofIntrinsicCapacityinFrailtyPrevention RubyYu J.Leung J.Woo Thejournalofnutrition,health&aging(2022) IntegratingDNAMethylationMeasuresofBiologicalAgingintoSocialDeterminantsofHealthResearch LaurelRaffington DanielW.Belsky CurrentEnvironmentalHealthReports(2022) Frailtyinkidneytransplantcandidates:acomparisonbetweenphysicalfrailtyphenotypeandFRAILscales MaríaJoséPérez-Sáez VanesaDávalos-Yerovi JulioPascual JournalofNephrology(2022) WhyDoWeCareMoreAboutDiseasethanHealth? MartinPicard Phenomics(2022) Shapingthenextstepsofresearchonfrailty:challengesandopportunities IvanAprahamian Qian-LiXue BMCGeriatrics(2021) DownloadPDF Advertisement Explorecontent Researcharticles Reviews&Analysis News&Comment Currentissue Collections FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal Aims&Scope JournalInformation JournalImpact AbouttheEditors Ourpublishingmodels EditorialValuesStatement EditorialPolicies ContentTypes Conferences Contact Publishwithus SubmissionGuidelines ForReviewers Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing



請為這篇文章評分?