Kinetic energy - Wikipedia

文章推薦指數: 80 %
投票人數:10人

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. ... It is defined as the work needed to accelerate a body of a ... Kineticenergy FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Energyofamovingphysicalbody KineticenergyThecarsofarollercoasterreachtheirmaximumkineticenergywhenatthebottomofthepath.Whentheystartrising,thekineticenergybeginstobeconvertedtogravitationalpotentialenergy.Thesumofkineticandpotentialenergyinthesystemremainsconstant,ignoringlossestofriction.CommonsymbolsKE,Ek,orTSI unitjoule(J)DerivationsfromotherquantitiesEk=1/2mv2 Ek=Et+Er PartofaseriesonClassicalmechanics F = d d t ( m v ) {\displaystyle{\textbf{F}}={\frac{d}{dt}}(m{\textbf{v}})} Secondlawofmotion History Timeline Textbooks Branches Applied Celestial Continuum Dynamics Kinematics Kinetics Statics Statistical Fundamentals Acceleration Angularmomentum Couple D'Alembert'sprinciple Energy kinetic potential Force Frameofreference Inertialframeofreference Impulse Inertia /Momentofinertia Mass Mechanicalpower Mechanicalwork Moment Momentum Space Speed Time Torque Velocity Virtualwork Formulations Newton'slawsofmotion AnalyticalmechanicsLagrangianmechanicsHamiltonianmechanicsRouthianmechanicsHamilton–JacobiequationAppell'sequationofmotionKoopman–vonNeumannmechanics Coretopics Dampingratio Displacement Equationsofmotion Euler'slawsofmotion Fictitiousforce Friction Harmonicoscillator Inertial /Non-inertialreferenceframe Mechanicsofplanarparticlemotion Motion (linear) Newton'slawofuniversalgravitation Newton'slawsofmotion Relativevelocity Rigidbody dynamics Euler'sequations Simpleharmonicmotion Vibration Rotation Circularmotion Rotatingreferenceframe Centripetalforce Centrifugalforce reactive Coriolisforce Pendulum Tangentialspeed Rotationalspeed Angularacceleration /displacement /frequency /velocity Scientists Kepler Galileo Huygens Newton Horrocks Halley Maupertuis DanielBernoulli JohannBernoulli Euler d'Alembert Clairaut Lagrange Laplace Hamilton Poisson Cauchy Routh Liouville Appell Gibbs Koopman vonNeumann  Physicsportal  Categoryvte ÉmilieduChâtelet(1706–1749)withapairofcompassesinherrighthand.Shewasthefirsttopublishtherelationforkineticenergy E kin ∝ m v 2 {\displaystyleE_{\text{kin}}\proptomv^{2}} .Thismeansthatanobjectwithtwicethespeedhitsfourtimes–2×2–harder.(PortraitbyMauriceQuentindeLaTour.) Inphysics,thekineticenergyofanobjectistheenergythatitpossessesduetoitsmotion.[1] Itisdefinedastheworkneededtoaccelerateabodyofagivenmassfromresttoitsstatedvelocity.Havinggainedthisenergyduringitsacceleration,thebodymaintainsthiskineticenergyunlessitsspeedchanges.Thesameamountofworkisdonebythebodywhendeceleratingfromitscurrentspeedtoastateofrest.Formally,akineticenergyisanyterminasystem'sLagrangianwhichincludesaderivativewithrespecttotime.[2][3] Inclassicalmechanics,thekineticenergyofanon-rotatingobjectofmassmtravelingataspeedvis 1 2 m v 2 {\textstyle{\frac{1}{2}}mv^{2}} .Inrelativisticmechanics,thisisagoodapproximationonlywhenvismuchlessthanthespeedoflight. Thestandardunitofkineticenergyisthejoule,whiletheEnglishunitofkineticenergyisthefoot-pound. Contents 1Historyandetymology 2Overview 3Newtoniankineticenergy 3.1Kineticenergyofrigidbodies 3.1.1Derivation 3.1.1.1Withoutvectorsandcalculus 3.1.1.2Withvectorsandcalculus 3.2Rotatingbodies 3.3Kineticenergyofsystems 3.4Fluiddynamics 3.5Frameofreference 3.6Rotationinsystems 4Relativistickineticenergy 4.1Generalrelativity 5Kineticenergyinquantummechanics 6Seealso 7Notes 8References 9Externallinks Historyandetymology TheadjectivekinetichasitsrootsintheGreekwordκίνησιςkinesis,meaning"motion".ThedichotomybetweenkineticenergyandpotentialenergycanbetracedbacktoAristotle'sconceptsofactualityandpotentiality.[4] TheprincipleinclassicalmechanicsthatE∝mv2wasfirstdevelopedbyGottfriedLeibnizandJohannBernoulli,whodescribedkineticenergyasthelivingforce,visviva.Willem'sGravesandeoftheNetherlandsprovidedexperimentalevidenceofthisrelationship.Bydroppingweightsfromdifferentheightsintoablockofclay,Willem'sGravesandedeterminedthattheirpenetrationdepthwasproportionaltothesquareoftheirimpactspeed.ÉmilieduChâteletrecognizedtheimplicationsoftheexperimentandpublishedanexplanation.[5] Thetermskineticenergyandworkintheirpresentscientificmeaningsdatebacktothemid-19thcentury.EarlyunderstandingsoftheseideascanbeattributedtoGaspard-GustaveCoriolis,whoin1829publishedthepapertitledDuCalculdel'EffetdesMachinesoutliningthemathematicsofkineticenergy.WilliamThomson,laterLordKelvin,isgiventhecreditforcoiningtheterm"kineticenergy"c.1849–1851.[6][7]Rankine,whohadintroducedtheterm"potentialenergy"in1853,andthephrase"actualenergy"tocomplementit,[8]latercitesWilliamThomsonandPeterTaitassubstitutingtheword"kinetic"for"actual".[9] Overview Energyoccursinmanyforms,includingchemicalenergy,thermalenergy,electromagneticradiation,gravitationalenergy,electricenergy,elasticenergy,nuclearenergy,andrestenergy.Thesecanbecategorizedintwomainclasses:potentialenergyandkineticenergy.Kineticenergyisthemovementenergyofanobject.Kineticenergycanbetransferredbetweenobjectsandtransformedintootherkindsofenergy.[10] Kineticenergymaybebestunderstoodbyexamplesthatdemonstratehowitistransformedtoandfromotherformsofenergy.Forexample,acyclistuseschemicalenergyprovidedbyfoodtoaccelerateabicycletoachosenspeed.Onalevelsurface,thisspeedcanbemaintainedwithoutfurtherwork,excepttoovercomeairresistanceandfriction.Thechemicalenergyhasbeenconvertedintokineticenergy,theenergyofmotion,buttheprocessisnotcompletelyefficientandproducesheatwithinthecyclist. Thekineticenergyinthemovingcyclistandthebicyclecanbeconvertedtootherforms.Forexample,thecyclistcouldencounterahilljusthighenoughtocoastup,sothatthebicyclecomestoacompletehaltatthetop.Thekineticenergyhasnowlargelybeenconvertedtogravitationalpotentialenergythatcanbereleasedbyfreewheelingdowntheothersideofthehill.Sincethebicyclelostsomeofitsenergytofriction,itneverregainsallofitsspeedwithoutadditionalpedaling.Theenergyisnotdestroyed;ithasonlybeenconvertedtoanotherformbyfriction.Alternatively,thecyclistcouldconnectadynamotooneofthewheelsandgeneratesomeelectricalenergyonthedescent.Thebicyclewouldbetravelingsloweratthebottomofthehillthanwithoutthegeneratorbecausesomeoftheenergyhasbeendivertedintoelectricalenergy.Anotherpossibilitywouldbeforthecyclisttoapplythebrakes,inwhichcasethekineticenergywouldbedissipatedthroughfrictionasheat. Likeanyphysicalquantitythatisafunctionofvelocity,thekineticenergyofanobjectdependsontherelationshipbetweentheobjectandtheobserver'sframeofreference.Thus,thekineticenergyofanobjectisnotinvariant. Spacecraftusechemicalenergytolaunchandgainconsiderablekineticenergytoreachorbitalvelocity.Inanentirelycircularorbit,thiskineticenergyremainsconstantbecausethereisalmostnofrictioninnear-earthspace.However,itbecomesapparentatre-entrywhensomeofthekineticenergyisconvertedtoheat.Iftheorbitisellipticalorhyperbolic,thenthroughouttheorbitkineticandpotentialenergyareexchanged;kineticenergyisgreatestandpotentialenergylowestatclosestapproachtotheearthorothermassivebody,whilepotentialenergyisgreatestandkineticenergythelowestatmaximumdistance.Disregardinglossorgainhowever,thesumofthekineticandpotentialenergyremainsconstant. Kineticenergycanbepassedfromoneobjecttoanother.Inthegameofbilliards,theplayerimposeskineticenergyonthecueballbystrikingitwiththecuestick.Ifthecueballcollideswithanotherball,itslowsdowndramatically,andtheballithitacceleratesitsspeedasthekineticenergyispassedontoit.Collisionsinbilliardsareeffectivelyelasticcollisions,inwhichkineticenergyispreserved.Ininelasticcollisions,kineticenergyisdissipatedinvariousformsofenergy,suchasheat,soundandbindingenergy(breakingboundstructures). Flywheelshavebeendevelopedasamethodofenergystorage.Thisillustratesthatkineticenergyisalsostoredinrotationalmotion. Severalmathematicaldescriptionsofkineticenergyexistthatdescribeitintheappropriatephysicalsituation.Forobjectsandprocessesincommonhumanexperience,theformula½mv²givenbyNewtonian(classical)mechanicsissuitable.However,ifthespeedoftheobjectiscomparabletothespeedoflight,relativisticeffectsbecomesignificantandtherelativisticformulaisused.Iftheobjectisontheatomicorsub-atomicscale,quantummechanicaleffectsaresignificant,andaquantummechanicalmodelmustbeemployed. Newtoniankineticenergy Kineticenergyofrigidbodies Inclassicalmechanics,thekineticenergyofapointobject(anobjectsosmallthatitsmasscanbeassumedtoexistatonepoint),oranon-rotatingrigidbodydependsonthemassofthebodyaswellasitsspeed.Thekineticenergyisequalto1/2theproductofthemassandthesquareofthespeed.Informulaform: E k = 1 2 m v 2 {\displaystyleE_{\text{k}}={\frac{1}{2}}mv^{2}} where m {\displaystylem} isthemassand v {\displaystylev} isthespeed(magnitudeofthevelocity)ofthebody.InSIunits,massismeasuredinkilograms,speedinmetrespersecond,andtheresultingkineticenergyisinjoules. Forexample,onewouldcalculatethekineticenergyofan80 kgmass(about180 lbs)travelingat18 metrespersecond(about40 mph,or65 km/h)as E k = 1 2 ⋅ 80 kg ⋅ ( 18 m/s ) 2 = 12 , 960 J = 12.96 kJ {\displaystyleE_{\text{k}}={\frac{1}{2}}\cdot80\,{\text{kg}}\cdot\left(18\,{\text{m/s}}\right)^{2}=12,960\,{\text{J}}=12.96\,{\text{kJ}}} Whenapersonthrowsaball,thepersondoesworkonittogiveitspeedasitleavesthehand.Themovingballcanthenhitsomethingandpushit,doingworkonwhatithits.Thekineticenergyofamovingobjectisequaltotheworkrequiredtobringitfromresttothatspeed,ortheworktheobjectcandowhilebeingbroughttorest:netforce×displacement=kineticenergy,i.e., F s = 1 2 m v 2 {\displaystyleFs={\frac{1}{2}}mv^{2}} Sincethekineticenergyincreaseswiththesquareofthespeed,anobjectdoublingitsspeedhasfourtimesasmuchkineticenergy.Forexample,acartravelingtwiceasfastasanotherrequiresfourtimesasmuchdistancetostop,assumingaconstantbrakingforce.Asaconsequenceofthisquadrupling,ittakesfourtimestheworktodoublethespeed. Thekineticenergyofanobjectisrelatedtoitsmomentumbytheequation: E k = p 2 2 m {\displaystyleE_{\text{k}}={\frac{p^{2}}{2m}}} where: p {\displaystylep} ismomentum m {\displaystylem} ismassofthebody Forthetranslationalkineticenergy,thatisthekineticenergyassociatedwithrectilinearmotion,ofarigidbodywithconstantmass m {\displaystylem} ,whosecenterofmassismovinginastraightlinewithspeed v {\displaystylev} ,asseenaboveisequalto E t = 1 2 m v 2 {\displaystyleE_{\text{t}}={\frac{1}{2}}mv^{2}} where: m {\displaystylem} isthemassofthebody v {\displaystylev} isthespeedofthecenterofmassofthebody. Thekineticenergyofanyentitydependsonthereferenceframeinwhichitismeasured.However,thetotalenergyofanisolatedsystem,i.e.oneinwhichenergycanneitherenternorleave,doesnotchangeovertimeinthereferenceframeinwhichitismeasured.Thus,thechemicalenergyconvertedtokineticenergybyarocketengineisdivideddifferentlybetweentherocketshipanditsexhauststreamdependinguponthechosenreferenceframe.ThisiscalledtheObertheffect.Butthetotalenergyofthesystem,includingkineticenergy,fuelchemicalenergy,heat,etc.,isconservedovertime,regardlessofthechoiceofreferenceframe.Differentobserversmovingwithdifferentreferenceframeswouldhoweverdisagreeonthevalueofthisconservedenergy. Thekineticenergyofsuchsystemsdependsonthechoiceofreferenceframe:thereferenceframethatgivestheminimumvalueofthatenergyisthecenterofmomentumframe,i.e.thereferenceframeinwhichthetotalmomentumofthesystemiszero.Thisminimumkineticenergycontributestotheinvariantmassofthesystemasawhole. Derivation Withoutvectorsandcalculus TheworkWdonebyaforceFonanobjectoveradistancesparalleltoFequals W = F ⋅ s {\displaystyleW=F\cdots} . UsingNewton'sSecondLaw F = m a {\displaystyleF=ma} withmthemassandatheaccelerationoftheobjectand s = a t 2 2 {\displaystyles={\frac{at^{2}}{2}}} thedistancetraveledbytheacceleratedobjectintimet,wefindwith v = a t {\displaystylev=at} forthevelocityvoftheobject W = m a a t 2 2 = m ( a t ) 2 2 = m v 2 2 . {\displaystyleW=ma{\frac{at^{2}}{2}}={\frac{m(at)^{2}}{2}}={\frac{mv^{2}}{2}}.} Withvectorsandcalculus TheworkdoneinacceleratingaparticlewithmassmduringtheinfinitesimaltimeintervaldtisgivenbythedotproductofforceFandtheinfinitesimaldisplacementdx F ⋅ d x = F ⋅ v d t = d p d t ⋅ v d t = v ⋅ d p = v ⋅ d ( m v ) , {\displaystyle\mathbf{F}\cdotd\mathbf{x}=\mathbf{F}\cdot\mathbf{v}dt={\frac{d\mathbf{p}}{dt}}\cdot\mathbf{v}dt=\mathbf{v}\cdotd\mathbf{p}=\mathbf{v}\cdotd(m\mathbf{v})\,,} wherewehaveassumedtherelationshipp = m vandthevalidityofNewton'sSecondLaw.(However,alsoseethespecialrelativisticderivationbelow.) Applyingtheproductruleweseethat: d ( v ⋅ v ) = ( d v ) ⋅ v + v ⋅ ( d v ) = 2 ( v ⋅ d v ) . {\displaystyled(\mathbf{v}\cdot\mathbf{v})=(d\mathbf{v})\cdot\mathbf{v}+\mathbf{v}\cdot(d\mathbf{v})=2(\mathbf{v}\cdotd\mathbf{v}).} Therefore,(assumingconstantmasssothatdm=0),wehave, v ⋅ d ( m v ) = m 2 d ( v ⋅ v ) = m 2 d v 2 = d ( m v 2 2 ) . {\displaystyle\mathbf{v}\cdotd(m\mathbf{v})={\frac{m}{2}}d(\mathbf{v}\cdot\mathbf{v})={\frac{m}{2}}dv^{2}=d\left({\frac{mv^{2}}{2}}\right).} Sincethisisatotaldifferential(thatis,itonlydependsonthefinalstate,nothowtheparticlegotthere),wecanintegrateitandcalltheresultkineticenergy.Assumingtheobjectwasatrestattime0,weintegratefromtime0totimetbecausetheworkdonebytheforcetobringtheobjectfromresttovelocityvisequaltotheworknecessarytodothereverse: E k = ∫ 0 t F ⋅ d x = ∫ 0 t v ⋅ d ( m v ) = ∫ 0 t d ( m v 2 2 ) = m v 2 2 . {\displaystyleE_{\text{k}}=\int_{0}^{t}\mathbf{F}\cdotd\mathbf{x}=\int_{0}^{t}\mathbf{v}\cdotd(m\mathbf{v})=\int_{0}^{t}d\left({\frac{mv^{2}}{2}}\right)={\frac{mv^{2}}{2}}.} Thisequationstatesthatthekineticenergy(Ek)isequaltotheintegralofthedotproductofthevelocity(v)ofabodyandtheinfinitesimalchangeofthebody'smomentum(p).Itisassumedthatthebodystartswithnokineticenergywhenitisatrest(motionless). Rotatingbodies IfarigidbodyQisrotatingaboutanylinethroughthecenterofmassthenithasrotationalkineticenergy( E r {\displaystyleE_{\text{r}}\,} )whichissimplythesumofthekineticenergiesofitsmovingparts,andisthusgivenby: E r = ∫ Q v 2 d m 2 = ∫ Q ( r ω ) 2 d m 2 = ω 2 2 ∫ Q r 2 d m = ω 2 2 I = 1 2 I ω 2 {\displaystyleE_{\text{r}}=\int_{Q}{\frac{v^{2}dm}{2}}=\int_{Q}{\frac{(r\omega)^{2}dm}{2}}={\frac{\omega^{2}}{2}}\int_{Q}{r^{2}}dm={\frac{\omega^{2}}{2}}I={\frac{1}{2}}I\omega^{2}} where: ωisthebody'sangularvelocity risthedistanceofanymassdmfromthatline I {\displaystyleI} isthebody'smomentofinertia,equalto ∫ Q r 2 d m {\textstyle\int_{Q}{r^{2}}dm} . (Inthisequationthemomentofinertiamustbetakenaboutanaxisthroughthecenterofmassandtherotationmeasuredbyωmustbearoundthataxis;moregeneralequationsexistforsystemswheretheobjectissubjecttowobbleduetoitseccentricshape). Kineticenergyofsystems Asystemofbodiesmayhaveinternalkineticenergyduetotherelativemotionofthebodiesinthesystem.Forexample,intheSolarSystemtheplanetsandplanetoidsareorbitingtheSun.Inatankofgas,themoleculesaremovinginalldirections.Thekineticenergyofthesystemisthesumofthekineticenergiesofthebodiesitcontains. Amacroscopicbodythatisstationary(i.e.areferenceframehasbeenchosentocorrespondtothebody'scenterofmomentum)mayhavevariouskindsofinternalenergyatthemolecularoratomiclevel,whichmayberegardedaskineticenergy,duetomoleculartranslation,rotation,andvibration,electrontranslationandspin,andnuclearspin.Theseallcontributetothebody'smass,asprovidedbythespecialtheoryofrelativity.Whendiscussingmovementsofamacroscopicbody,thekineticenergyreferredtoisusuallythatofthemacroscopicmovementonly.However,allinternalenergiesofalltypescontributetoabody'smass,inertia,andtotalenergy. Fluiddynamics Influiddynamics,thekineticenergyperunitvolumeateachpointinanincompressiblefluidflowfieldiscalledthedynamicpressureatthatpoint.[11] E k = 1 2 m v 2 {\displaystyleE_{\text{k}}={\frac{1}{2}}mv^{2}} DividingbyV,theunitofvolume: E k V = 1 2 m V v 2 q = 1 2 ρ v 2 {\displaystyle{\begin{aligned}{\frac{E_{\text{k}}}{V}}&={\frac{1}{2}}{\frac{m}{V}}v^{2}\\q&={\frac{1}{2}}\rhov^{2}\end{aligned}}} where q {\displaystyleq} isthedynamicpressure,andρisthedensityoftheincompressiblefluid. Frameofreference Thespeed,andthusthekineticenergyofasingleobjectisframe-dependent(relative):itcantakeanynon-negativevalue,bychoosingasuitableinertialframeofreference.Forexample,abulletpassinganobserverhaskineticenergyinthereferenceframeofthisobserver.Thesamebulletisstationarytoanobservermovingwiththesamevelocityasthebullet,andsohaszerokineticenergy.[12]Bycontrast,thetotalkineticenergyofasystemofobjectscannotbereducedtozerobyasuitablechoiceoftheinertialreferenceframe,unlessalltheobjectshavethesamevelocity.Inanyothercase,thetotalkineticenergyhasanon-zerominimum,asnoinertialreferenceframecanbechoseninwhichalltheobjectsarestationary.Thisminimumkineticenergycontributestothesystem'sinvariantmass,whichisindependentofthereferenceframe. Thetotalkineticenergyofasystemdependsontheinertialframeofreference:itisthesumofthetotalkineticenergyinacenterofmomentumframeandthekineticenergythetotalmasswouldhaveifitwereconcentratedinthecenterofmass. Thismaybesimplyshown:let V {\displaystyle\textstyle\mathbf{V}} betherelativevelocityofthecenterofmassframeiintheframek.Since v 2 = ( v i + V ) 2 = ( v i + V ) ⋅ ( v i + V ) = v i ⋅ v i + 2 v i ⋅ V + V ⋅ V = v i 2 + 2 v i ⋅ V + V 2 , {\displaystylev^{2}=\left(v_{i}+V\right)^{2}=\left(\mathbf{v}_{i}+\mathbf{V}\right)\cdot\left(\mathbf{v}_{i}+\mathbf{V}\right)=\mathbf{v}_{i}\cdot\mathbf{v}_{i}+2\mathbf{v}_{i}\cdot\mathbf{V}+\mathbf{V}\cdot\mathbf{V}=v_{i}^{2}+2\mathbf{v}_{i}\cdot\mathbf{V}+V^{2},} Then, E k = ∫ v 2 2 d m = ∫ v i 2 2 d m + V ⋅ ∫ v i d m + V 2 2 ∫ d m . {\displaystyleE_{\text{k}}=\int{\frac{v^{2}}{2}}dm=\int{\frac{v_{i}^{2}}{2}}dm+\mathbf{V}\cdot\int\mathbf{v}_{i}dm+{\frac{V^{2}}{2}}\intdm.} However,let ∫ v i 2 2 d m = E i {\textstyle\int{\frac{v_{i}^{2}}{2}}dm=E_{i}} thekineticenergyinthecenterofmassframe, ∫ v i d m {\textstyle\int\mathbf{v}_{i}dm} wouldbesimplythetotalmomentumthatisbydefinitionzerointhecenterofmassframe,andletthetotalmass: ∫ d m = M {\textstyle\intdm=M} .Substituting,weget:[13] E k = E i + M V 2 2 . {\displaystyleE_{\text{k}}=E_{i}+{\frac{MV^{2}}{2}}.} Thusthekineticenergyofasystemislowesttocenterofmomentumreferenceframes,i.e.,framesofreferenceinwhichthecenterofmassisstationary(eitherthecenterofmassframeoranyothercenterofmomentumframe).Inanydifferentframeofreference,thereisadditionalkineticenergycorrespondingtothetotalmassmovingatthespeedofthecenterofmass.Thekineticenergyofthesysteminthecenterofmomentumframeisaquantitythatisinvariant(allobserversseeittobethesame). Rotationinsystems Itsometimesisconvenienttosplitthetotalkineticenergyofabodyintothesumofthebody'scenter-of-masstranslationalkineticenergyandtheenergyofrotationaroundthecenterofmass(rotationalenergy): E k = E t + E r {\displaystyleE_{\text{k}}=E_{\text{t}}+E_{\text{r}}} where: Ekisthetotalkineticenergy Etisthetranslationalkineticenergy Eristherotationalenergyorangularkineticenergyintherestframe Thusthekineticenergyofatennisballinflightisthekineticenergyduetoitsrotation,plusthekineticenergyduetoitstranslation. Relativistickineticenergy Seealso:MassinspecialrelativityandTestsofrelativisticenergyandmomentum Ifabody'sspeedisasignificantfractionofthespeedoflight,itisnecessarytouserelativisticmechanicstocalculateitskineticenergy.Inspecialrelativitytheory,theexpressionforlinearmomentumismodified. Withmbeinganobject'srestmass,vandvitsvelocityandspeed,andcthespeedoflightinvacuum,weusetheexpressionforlinearmomentum p = m γ v {\displaystyle\mathbf{p}=m\gamma\mathbf{v}} ,where γ = 1 / 1 − v 2 / c 2 {\textstyle\gamma=1/{\sqrt{1-v^{2}/c^{2}}}} . Integratingbypartsyields E k = ∫ v ⋅ d p = ∫ v ⋅ d ( m γ v ) = m γ v ⋅ v − ∫ m γ v ⋅ d v = m γ v 2 − m 2 ∫ γ d ( v 2 ) {\displaystyleE_{\text{k}}=\int\mathbf{v}\cdotd\mathbf{p}=\int\mathbf{v}\cdotd(m\gamma\mathbf{v})=m\gamma\mathbf{v}\cdot\mathbf{v}-\intm\gamma\mathbf{v}\cdotd\mathbf{v}=m\gammav^{2}-{\frac{m}{2}}\int\gammad\left(v^{2}\right)} Since γ = ( 1 − v 2 / c 2 ) − 1 2 {\displaystyle\gamma=\left(1-v^{2}/c^{2}\right)^{-{\frac{1}{2}}}} , E k = m γ v 2 − − m c 2 2 ∫ γ d ( 1 − v 2 c 2 ) = m γ v 2 + m c 2 ( 1 − v 2 c 2 ) 1 2 − E 0 {\displaystyle{\begin{aligned}E_{\text{k}}&=m\gammav^{2}-{\frac{-mc^{2}}{2}}\int\gammad\left(1-{\frac{v^{2}}{c^{2}}}\right)\\&=m\gammav^{2}+mc^{2}\left(1-{\frac{v^{2}}{c^{2}}}\right)^{\frac{1}{2}}-E_{0}\end{aligned}}} E 0 {\displaystyleE_{0}} isaconstantofintegrationfortheindefiniteintegral. Simplifyingtheexpressionweobtain E k = m γ ( v 2 + c 2 ( 1 − v 2 c 2 ) ) − E 0 = m γ ( v 2 + c 2 − v 2 ) − E 0 = m γ c 2 − E 0 {\displaystyle{\begin{aligned}E_{\text{k}}&=m\gamma\left(v^{2}+c^{2}\left(1-{\frac{v^{2}}{c^{2}}}\right)\right)-E_{0}\\&=m\gamma\left(v^{2}+c^{2}-v^{2}\right)-E_{0}\\&=m\gammac^{2}-E_{0}\end{aligned}}} E 0 {\displaystyleE_{0}} isfoundbyobservingthatwhen v = 0 ,   γ = 1 {\displaystyle\mathbf{v}=0,\\gamma=1} and E k = 0 {\displaystyleE_{\text{k}}=0} ,giving E 0 = m c 2 {\displaystyleE_{0}=mc^{2}} resultingintheformula E k = m γ c 2 − m c 2 = m c 2 1 − v 2 c 2 − m c 2 = ( γ − 1 ) m c 2 {\displaystyleE_{\text{k}}=m\gammac^{2}-mc^{2}={\frac{mc^{2}}{\sqrt{1-{\frac{v^{2}}{c^{2}}}}}}-mc^{2}=(\gamma-1)mc^{2}} Thisformulashowsthattheworkexpendedacceleratinganobjectfromrestapproachesinfinityasthevelocityapproachesthespeedoflight.Thusitisimpossibletoaccelerateanobjectacrossthisboundary. Themathematicalby-productofthiscalculationisthemass-energyequivalenceformula—thebodyatrestmusthaveenergycontent E rest = E 0 = m c 2 {\displaystyleE_{\text{rest}}=E_{0}=mc^{2}} Atalowspeed(v≪c),therelativistickineticenergyisapproximatedwellbytheclassicalkineticenergy.ThisisdonebybinomialapproximationorbytakingthefirsttwotermsoftheTaylorexpansionforthereciprocalsquareroot: E k ≈ m c 2 ( 1 + 1 2 v 2 c 2 ) − m c 2 = 1 2 m v 2 {\displaystyleE_{\text{k}}\approxmc^{2}\left(1+{\frac{1}{2}}{\frac{v^{2}}{c^{2}}}\right)-mc^{2}={\frac{1}{2}}mv^{2}} So,thetotalenergy E k {\displaystyleE_{k}} canbepartitionedintotherestmassenergyplustheNewtoniankineticenergyatlowspeeds. Whenobjectsmoveataspeedmuchslowerthanlight(e.g.ineverydayphenomenaonEarth),thefirsttwotermsoftheseriespredominate.ThenexttermintheTaylorseriesapproximation E k ≈ m c 2 ( 1 + 1 2 v 2 c 2 + 3 8 v 4 c 4 ) − m c 2 = 1 2 m v 2 + 3 8 m v 4 c 2 {\displaystyleE_{\text{k}}\approxmc^{2}\left(1+{\frac{1}{2}}{\frac{v^{2}}{c^{2}}}+{\frac{3}{8}}{\frac{v^{4}}{c^{4}}}\right)-mc^{2}={\frac{1}{2}}mv^{2}+{\frac{3}{8}}m{\frac{v^{4}}{c^{2}}}} issmallforlowspeeds.Forexample,foraspeedof10 km/s(22,000 mph)thecorrectiontotheNewtoniankineticenergyis0.0417 J/kg(onaNewtoniankineticenergyof50 MJ/kg)andforaspeedof100 km/sitis417 J/kg(onaNewtoniankineticenergyof5 GJ/kg). Therelativisticrelationbetweenkineticenergyandmomentumisgivenby E k = p 2 c 2 + m 2 c 4 − m c 2 {\displaystyleE_{\text{k}}={\sqrt{p^{2}c^{2}+m^{2}c^{4}}}-mc^{2}} ThiscanalsobeexpandedasaTaylorseries,thefirsttermofwhichisthesimpleexpressionfromNewtonianmechanics:[14] E k ≈ p 2 2 m − p 4 8 m 3 c 2 . {\displaystyleE_{\text{k}}\approx{\frac{p^{2}}{2m}}-{\frac{p^{4}}{8m^{3}c^{2}}}.} Thissuggeststhattheformulaeforenergyandmomentumarenotspecialandaxiomatic,butconceptsemergingfromtheequivalenceofmassandenergyandtheprinciplesofrelativity. Generalrelativity Seealso:Schwarzschildgeodesics Usingtheconventionthat g α β u α u β = − c 2 {\displaystyleg_{\alpha\beta}\,u^{\alpha}\,u^{\beta}\,=\,-c^{2}} wherethefour-velocityofaparticleis u α = d x α d τ {\displaystyleu^{\alpha}\,=\,{\frac{dx^{\alpha}}{d\tau}}} and τ {\displaystyle\tau} isthepropertimeoftheparticle,thereisalsoanexpressionforthekineticenergyoftheparticleingeneralrelativity. Iftheparticlehasmomentum p β = m g β α u α {\displaystylep_{\beta}\,=\,m\,g_{\beta\alpha}\,u^{\alpha}} asitpassesbyanobserverwithfour-velocityuobs,thentheexpressionfortotalenergyoftheparticleasobserved(measuredinalocalinertialframe)is E = − p β u obs β {\displaystyleE\,=\,-\,p_{\beta}\,u_{\text{obs}}^{\beta}} andthekineticenergycanbeexpressedasthetotalenergyminustherestenergy: E k = − p β u obs β − m c 2 . {\displaystyleE_{k}\,=\,-\,p_{\beta}\,u_{\text{obs}}^{\beta}\,-\,m\,c^{2}\,.} Considerthecaseofametricthatisdiagonalandspatiallyisotropic(gtt,gss,gss,gss).Since u α = d x α d t d t d τ = v α u t {\displaystyleu^{\alpha}={\frac{dx^{\alpha}}{dt}}{\frac{dt}{d\tau}}=v^{\alpha}u^{t}} wherevαistheordinaryvelocitymeasuredw.r.t.thecoordinatesystem,weget − c 2 = g α β u α u β = g t t ( u t ) 2 + g s s v 2 ( u t ) 2 . {\displaystyle-c^{2}=g_{\alpha\beta}u^{\alpha}u^{\beta}=g_{tt}\left(u^{t}\right)^{2}+g_{ss}v^{2}\left(u^{t}\right)^{2}\,.} Solvingforutgives u t = c − 1 g t t + g s s v 2 . {\displaystyleu^{t}=c{\sqrt{\frac{-1}{g_{tt}+g_{ss}v^{2}}}}\,.} Thusforastationaryobserver(v=0) u obs t = c − 1 g t t {\displaystyleu_{\text{obs}}^{t}=c{\sqrt{\frac{-1}{g_{tt}}}}} andthusthekineticenergytakestheform E k = − m g t t u t u obs t − m c 2 = m c 2 g t t g t t + g s s v 2 − m c 2 . {\displaystyleE_{\text{k}}=-mg_{tt}u^{t}u_{\text{obs}}^{t}-mc^{2}=mc^{2}{\sqrt{\frac{g_{tt}}{g_{tt}+g_{ss}v^{2}}}}-mc^{2}\,.} Factoringouttherestenergygives: E k = m c 2 ( g t t g t t + g s s v 2 − 1 ) . {\displaystyleE_{\text{k}}=mc^{2}\left({\sqrt{\frac{g_{tt}}{g_{tt}+g_{ss}v^{2}}}}-1\right)\,.} Thisexpressionreducestothespecialrelativisticcasefortheflat-spacemetricwhere g t t = − c 2 g s s = 1 . {\displaystyle{\begin{aligned}g_{tt}&=-c^{2}\\g_{ss}&=1\,.\end{aligned}}} IntheNewtonianapproximationtogeneralrelativity g t t = − ( c 2 + 2 Φ ) g s s = 1 − 2 Φ c 2 {\displaystyle{\begin{aligned}g_{tt}&=-\left(c^{2}+2\Phi\right)\\g_{ss}&=1-{\frac{2\Phi}{c^{2}}}\end{aligned}}} whereΦistheNewtoniangravitationalpotential.Thismeansclocksrunslowerandmeasuringrodsareshorternearmassivebodies. Kineticenergyinquantummechanics Furtherinformation:Hamiltonian(quantummechanics) Inquantummechanics,observableslikekineticenergyarerepresentedasoperators.Foroneparticleofmassm,thekineticenergyoperatorappearsasatermintheHamiltonianandisdefinedintermsofthemorefundamentalmomentumoperator p ^ {\displaystyle{\hat{p}}} .Thekineticenergyoperatorinthenon-relativisticcasecanbewrittenas T ^ = p ^ 2 2 m . {\displaystyle{\hat{T}}={\frac{{\hat{p}}^{2}}{2m}}.} Noticethatthiscanbeobtainedbyreplacing p {\displaystylep} by p ^ {\displaystyle{\hat{p}}} intheclassicalexpressionforkineticenergyintermsofmomentum, E k = p 2 2 m . {\displaystyleE_{\text{k}}={\frac{p^{2}}{2m}}.} IntheSchrödingerpicture, p ^ {\displaystyle{\hat{p}}} takestheform − i ℏ ∇ {\displaystyle-i\hbar\nabla} wherethederivativeistakenwithrespecttopositioncoordinatesandhence T ^ = − ℏ 2 2 m ∇ 2 . {\displaystyle{\hat{T}}=-{\frac{\hbar^{2}}{2m}}\nabla^{2}.} Theexpectationvalueoftheelectronkineticenergy, ⟨ T ^ ⟩ {\displaystyle\left\langle{\hat{T}}\right\rangle} ,forasystemofNelectronsdescribedbythewavefunction | ψ ⟩ {\displaystyle\vert\psi\rangle} isasumof1-electronoperatorexpectationvalues: ⟨ T ^ ⟩ = ⟨ ψ | ∑ i = 1 N − ℏ 2 2 m e ∇ i 2 | ψ ⟩ = − ℏ 2 2 m e ∑ i = 1 N ⟨ ψ | ∇ i 2 | ψ ⟩ {\displaystyle\left\langle{\hat{T}}\right\rangle=\left\langle\psi\left\vert\sum_{i=1}^{N}{\frac{-\hbar^{2}}{2m_{\text{e}}}}\nabla_{i}^{2}\right\vert\psi\right\rangle=-{\frac{\hbar^{2}}{2m_{\text{e}}}}\sum_{i=1}^{N}\left\langle\psi\left\vert\nabla_{i}^{2}\right\vert\psi\right\rangle} where m e {\displaystylem_{\text{e}}} isthemassoftheelectronand ∇ i 2 {\displaystyle\nabla_{i}^{2}} istheLaplacianoperatoractinguponthecoordinatesoftheithelectronandthesummationrunsoverallelectrons. Thedensityfunctionalformalismofquantummechanicsrequiresknowledgeoftheelectrondensityonly,i.e.,itformallydoesnotrequireknowledgeofthewavefunction.Givenanelectrondensity ρ ( r ) {\displaystyle\rho(\mathbf{r})} ,theexactN-electronkineticenergyfunctionalisunknown;however,forthespecificcaseofa1-electronsystem,thekineticenergycanbewrittenas T [ ρ ] = 1 8 ∫ ∇ ρ ( r ) ⋅ ∇ ρ ( r ) ρ ( r ) d 3 r {\displaystyleT[\rho]={\frac{1}{8}}\int{\frac{\nabla\rho(\mathbf{r})\cdot\nabla\rho(\mathbf{r})}{\rho(\mathbf{r})}}d^{3}r} where T [ ρ ] {\displaystyleT[\rho]} isknownasthevonWeizsäckerkineticenergyfunctional. Seealso Energyportal Escapevelocity Foot-pound Joule Kineticenergypenetrator Kineticenergyperunitmassofprojectiles Kineticprojectile Parallelaxistheorem Potentialenergy Recoil Notes ^Jain,MaheshC.(2009).TextbookofEngineeringPhysics(PartI).p. 9.ISBN 978-81-203-3862-3.Archivedfromtheoriginalon2020-08-04.Retrieved2018-06-21.,Chapter1,p.9Archived2020-08-04attheWaybackMachine ^Landau,Lev;Lifshitz,Evgeny(15January1976).Mechanics(Third ed.).p. 15.ISBN 0-7506-2896-0. ^Goldstein,Herbert.ClassicalMechanics(Third ed.).p. 62-33.ISBN 978-0201657029. ^Brenner,Joseph(2008).LogicinReality(illustrated ed.).SpringerScience&BusinessMedia.p. 93.ISBN 978-1-4020-8375-4.Archivedfromtheoriginalon2020-01-25.Retrieved2016-02-01.Extractofpage93Archived2020-08-04attheWaybackMachine ^JudithP.Zinsser(2007).EmilieduChatelet:DaringGeniusoftheEnlightenment.Penguin.ISBN 978-0-14-311268-6. ^CrosbieSmith,M.NortonWise(1989-10-26).EnergyandEmpire:ABiographicalStudyofLordKelvin.CambridgeUniversityPress.p. 866.ISBN 0-521-26173-2. ^JohnTheodoreMerz(1912).AHistoryofEuropeanThoughtintheNineteenthCentury.Blackwood.p. 139.ISBN 0-8446-2579-5. ^WilliamJohnMacquornRankine(1853)."Onthegenerallawofthetransformationofenergy".ProceedingsofthePhilosophicalSocietyofGlasgow.3(5). ^"...whatremainedtobedone,wastoqualifythenoun'energy'byappropriateadjectives,soastodistinguishbetweenenergyofactivityandenergyofconfiguration.Thewell-knownpairofantitheticaladjectives,'actual'and'potential,'seemedexactlysuitedforthatpurpose....SirWilliamThomsonandProfessorTaithavelatelysubstitutedtheword'kinetic'for'actual.'"WilliamJohnMacquornRankine(1867)."OnthePhrase"PotentialEnergy,"andontheDefinitionsofPhysicalQuantities".ProceedingsofthePhilosophicalSocietyofGlasgow.VI(III). ^Goel,V.K.(2007).FundamentalsOfPhysicsXi(illustrated ed.).TataMcGraw-HillEducation.p. 12.30.ISBN 978-0-07-062060-5.Archivedfromtheoriginalon2020-08-03.Retrieved2020-07-07.Extractofpage12.30Archived2020-07-07attheWaybackMachine ^A.M.KuetheandJ.D.Schetzer(1959)FoundationsofAerodynamics,2ndedition,p.53.JohnWiley&SonsISBN 0-471-50952-3 ^Sears,FrancisWeston;Brehme,RobertW.(1968).Introductiontothetheoryofrelativity.Addison-Wesley.p. 127.,Snippetviewofpage127Archived2020-08-04attheWaybackMachine ^Physicsnotes-KineticenergyintheCMframeArchived2007-06-11attheWaybackMachine.Duke.edu.Accessed2007-11-24. ^Fitzpatrick,Richard(20July2010)."FineStructureofHydrogen".QuantumMechanics.Archivedfromtheoriginalon25August2016.Retrieved20August2016. References PhysicsClassroom(2000)."KineticEnergy".Retrieved2015-07-19. SchoolofMathematicsandStatistics,UniversityofStAndrews(2000)."BiographyofGaspard-GustavedeCoriolis(1792-1843)".Retrieved2006-03-03. Serway,RaymondA.;Jewett,JohnW.(2004).PhysicsforScientistsandEngineers(6th ed.).Brooks/Cole.ISBN 0-534-40842-7. Tipler,Paul(2004).PhysicsforScientistsandEngineers:Mechanics,OscillationsandWaves,Thermodynamics(5th ed.).W.H.Freeman.ISBN 0-7167-0809-4. Tipler,Paul;Llewellyn,Ralph(2002).ModernPhysics(4th ed.).W.H.Freeman.ISBN 0-7167-4345-0. Externallinks MediarelatedtoKineticenergyatWikimediaCommons vteEnergy Outline History Index Fundamentalconcepts Energy Units Conservationofenergy Energetics Energytransformation Energycondition Energytransition Energylevel Energysystem Mass Negativemass Mass–energyequivalence Power Thermodynamics Quantumthermodynamics Lawsofthermodynamics Thermodynamicsystem Thermodynamicstate Thermodynamicpotential Thermodynamicfreeenergy Irreversibleprocess Thermalreservoir Heattransfer Heatcapacity Volume(thermodynamics) Thermodynamicequilibrium Thermalequilibrium Thermodynamictemperature Isolatedsystem Entropy Freeentropy Entropicforce Negentropy Work Exergy Enthalpy Types Kinetic Internal Thermal Potential Gravitational Elastic Electricpotentialenergy Mechanical Interatomicpotential Quantumpotential Electrical Magnetic Ionization Radiant Binding Nuclearbindingenergy Gravitationalbindingenergy Quantumchromodynamicsbindingenergy Dark Quintessence Phantom Negative Chemical Rest Soundenergy Surfaceenergy Vacuumenergy Zero-pointenergy Quantumpotential Quantumfluctuation Energycarriers Radiation Enthalpy Mechanicalwave Soundwave Fuel fossilfuel Hydrogen Hydrogenfuel Heat Latentheat Work Electricity Battery Capacitor Primaryenergy Fossilfuel Coal Petroleum Naturalgas Nuclearfuel Naturaluranium Radiantenergy Solar Wind Hydropower Marineenergy Geothermal Bioenergy Gravitationalenergy Energysystemcomponents Energyengineering Oilrefinery Electricpower Fossilfuelpowerstation Cogeneration Integratedgasificationcombinedcycle Nuclearpower Nuclearpowerplant Radioisotopethermoelectricgenerator Solarpower Photovoltaicsystem Concentratedsolarpower Solarthermalenergy Solarpowertower Solarfurnace Windpower Windfarm Airbornewindenergy Hydropower Hydroelectricity Wavefarm Tidalpower Geothermalpower Biomass Useandsupply Energyconsumption Energystorage Worldenergyconsumption Energysecurity Energyconservation Efficientenergyuse Transport Agriculture Renewableenergy Sustainableenergy Energypolicy Energydevelopment Worldwideenergysupply SouthAmerica USA Mexico Canada Europe Asia Africa Australia Misc. Jevonsparadox Carbonfootprint Category Commons Portal WikiProject Authoritycontrol:Nationallibraries Germany Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Kinetic_energy&oldid=1105057551" Categories:KineticenergyDynamics(mechanics)FormsofenergyHiddencategories:WebarchivetemplatewaybacklinksArticleswithshortdescriptionShortdescriptionmatchesWikidataWikipediaindefinitelysemi-protectedpagesCommonscategorylinkfromWikidataArticleswithGNDidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadViewsourceViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages Afrikaansالعربيةঅসমীয়াAsturianuAzərbaycancaবাংলাБеларускаяБеларуская(тарашкевіца)BikolCentralБългарскиBosanskiCatalàЧӑвашлаČeštinaChiShonaCymraegDanskDeutschEestiΕλληνικάEspañolEsperantoEuskaraفارسیFrançaisFryskGaeilgeGalego한국어Հայերենहिन्दीHrvatskiIdoBahasaIndonesiaÍslenskaItalianoעבריתJawaಕನ್ನಡქართულიҚазақшаKreyòlayisyenKriyòlgwiyannenLatinaLatviešuLietuviųMagyarМакедонскиമലയാളംमराठीBahasaMelayuNederlandsनेपाली日本語NorskbokmålNorsknynorskOccitanOʻzbekcha/ўзбекчаਪੰਜਾਬੀپنجابیPatoisPiemontèisPolskiPortuguêsRomânăРусскийScotsShqipසිංහලSimpleEnglishSlovenčinaSlovenščinaSoomaaligaСрпски/srpskiSrpskohrvatski/српскохрватскиSuomiSvenskaதமிழ்Татарча/tatarçaతెలుగుไทยTürkçeУкраїнськаاردوTiếngViệt文言WinarayWolof吴语ייִדיש粵語中文 Editlinks



請為這篇文章評分?