Cognitive Processing Speed, Working Memory, and the ...
文章推薦指數: 80 %
Cognitive processing speed (CPS) is the rate at which relatively simple perceptual and automatic cognitive operations can be carried out; ... DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) totalviews ViewArticleImpact SHAREON ClaudiaRepetto CatholicUniversityoftheSacredHeart,Italy PietroSpataro MercatorumUniversity,Italy ChristianDesloovere UniversityHospitalsLeuven,Belgium Theeditorandreviewer'saffiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction MaterialsandMethods Results Discussion Conclusion EthicsStatement AuthorContributions Funding ConflictofInterestStatement Acknowledgments References Checkforupdates Peoplealsolookedat ORIGINALRESEARCHarticle Front.Psychol.,15August2017Sec.Cognition https://doi.org/10.3389/fpsyg.2017.01308 CognitiveProcessingSpeed,WorkingMemory,andtheIntelligibilityofHearingAid-ProcessedSpeechinPersonswithHearingImpairment WycliffeKabayweYumba1,2* 1DepartmentofBehavioralSciencesandLearning,LinköpingUniversity,Linköping,Sweden 2LinnaeusCentreHEAD,SwedishInstituteforDisabilityResearch,LinköpingUniversity,Linköping,Sweden Previousstudieshavedemonstratedthatsuccessfullisteningwithadvancedsignalprocessingindigitalhearingaidsisassociatedwithindividualcognitivecapacity,particularlyworkingmemorycapacity(WMC).Thisstudyaimedtoexaminetherelationshipbetweencognitiveabilities(cognitiveprocessingspeedandWMC)andindividuallisteners’responsestodigitalsignalprocessingsettingsinadverselisteningconditions.Atotalof194nativeSwedishspeakers(83womenand111men),aged33–80years(mean=60.75years,SD=8.89),withbilateral,symmetricalmildtomoderatesensorineuralhearinglosswhohadcompletedalexicaldecisionspeedtest(measuringcognitiveprocessingspeed)andsemanticword-pairspantest(SWPST,capturingWMC)participatedinthisstudy.TheHagermantest(capturingspeechrecognitioninnoise)wasconductedusinganexperimentalhearingaidwiththreedigitalsignalprocessingsettings:(1)linearamplificationwithoutnoisereduction(NoP),(2)linearamplificationwithnoisereduction(NR),and(3)non-linearamplificationwithoutNR(“fast-actingcompression”).Theresultsshowedthatcognitiveprocessingspeedwasabetterpredictorofspeechintelligibilityinnoise,regardlessofthetypesofsignalprocessingalgorithmsused.Thatis,therewasastrongerassociationbetweencognitiveprocessingspeedandNRoutcomesandfast-actingcompressionoutcomes(insteadystatenoise).WeobservedaweakerrelationshipbetweenworkingmemoryandNR,butWMCdidnotrelatetofast-actingcompression.WMCwasarelativelyweakerpredictorofspeechintelligibilityinnoise.Thesefindingsmighthavebeendifferentiftheparticipantshadbeenprovidedwithtrainingandorallowedtoacclimatizetobinarymaskingnoisereductionorfast-actingcompression. Introduction Hearing-impairedindividualsoftenshowincreaseddifficultiesrecognizingspeechunderadverselisteningconditions,includingnoiseandreverberantordistortedspeech,evenwhenwearinghearingaids(CommitteeonHearing,Bioacoustics,andBiomechanics[CHABA],1988;Akeroyd,2008;Larsbyetal.,2008;SouzaandArehart,2015).Previousstudieshaveindicatedthatolderadulthearingaidusersmayhavedifficultieshandlingtheconsequencesofhearingaidsignalprocessing,whetherinregardtothedistortionscausedbytheeffectsofbackgroundnoiseortheunwantedartifactsfromcertaindigitalsignalprocessingalgorithms(e.g.,fast-actingcompression;Lunner,2003;SouzaandArehart,2015).Theseconsequencesmayleadtobenefitsofsignalprocessinginthehearingaidthatarelessthanexpected.Itmaybepossiblethatthesignalprocessingimplementedinthehearingaiditselfmaybecognitivelydemandingforhearing-impairedhearingaidwearers(Lunner,2003).Othersstudieshaveattributedspeechrecognitiondifficultiesamonghearing-impairedhearingaiduserstotheslow-downofcognitivespeed.Thisdeclineincognitiveprocessingspeedmayarisefromageneralizedslowinginbrainfunctioningduetoadvancementinage,whichcouldberesponsibleformost,ifnotall,age-relateddeclinesinproblem-solving,memory,andlanguagecomprehension(Salthouse,1996;Pichora-Fuller,2003;Schneideretal.,2005). Workingmemoryreferstoacognitivesystemresponsibleforprocessingandtemporarystorageofinformationduringcomplexcognitivetasks,suchascomprehension,learningandreasoning(BaddeleyandHitch,1974;DanemanandCarpenter,1980;Baddeley,1986).Thismemorysystemisassumedtohavealimitedcapacitythatneedbesharedbetweentheworkandthememory,betweentheprocessingandstoragedemandsofthetasktowhichtheworkingmemoryisapplied(DanemanandCarpenter,1980;Baddeley,2012).Workingmemorycapacity(WMC)isgenerallyassessedwithspantests,suchasreadingspantest(DanemanandCarpenter,1980),semanticword-pairspantest(Rönnbergetal.,2016).Cognitiveprocessingspeed(CPS)istherateatwhichrelativelysimpleperceptualandautomaticcognitiveoperationscanbecarriedout;usuallythisismeasuredundertimepressureinsuchthatadegreeoffocusedattentionisinvolved(Salthouse,1996,2000).Severaltypesoftasksareusedtomeasurecognitiveprocessingspeedability,includinglexicaldecisionspeedtest(LDT),rapidautomatizednamingtest(RAN),physicalmatchingtest(PMT),Rhymejudgmenttest,thedigitalsymbolsubstitutiontest(DSST),theflankertask,etc.(Wingfieldetal.,1985;Rönnberg,1990;Salthouse,1996;Wiigetal.,2002).Forexample,LDTisconsideredasoneofthemostoftenusedtasksinthefieldofvisualwordrecognition.Inthistask,participantshavetojudgeasquicklyandaccuratelyaspossiblewhetheradisplayedletterstringisarealwordoranon-word(Rönnberg,1990).TheoverallassumptionthatunderliestheuseofLDTisthattherateandtheaccuracyofreactingtowordstimulishowstheeffectivenesswithwhichwordrepresentationsareactivatedorretrievedfromlong-termlexicalmemory(Rönnberg,1990).Previousstudiessuggestedthatcognitiveprocessingspeedmaybeaffectedbyindividuals’knowledgebaseandexperience.Thatis,themoreanindividualknowsaboutsomethingand/ortheexperienceshe/hehaswithit,thegreatertheprobabilitythather/hiscognitiveprocessingspeedontasksrelatedtothisinformationwillbeincreased(Lunner,2003;Pichora-Fuller,2003;DesjardinsandDoherty,2014). AcomprehensivewayofviewingtherelationshipbetweenworkingmemoryandspeechrecognitionisviatheEaseofLanguageUnderstanding(ELU)model(Rönnbergetal.,2008,2013).TheELUmodelconsiderslanguageinputasconsistingofphonological,syntacticprosodic,andsemanticinformation.Thatis,whenspeechsignalinputisdegradedoralteredfromitsordinaryform,itcanbemoredifficulttomatchthoseacousticpatternstophonologicalrepresentationsstoredinthelongtermmemory,andworkingmemorymaybeexplicitlyengagedtoagreaterextenttoreconcileamatch(mismatch,Rönnbergetal.,2008).However,underfavorableconditions,theincomingspeechsignalinputarenotdegraded(audibleorundistorted),itcanbeeasilymatchedtoaphonologicalrepresentationstoredinlong-termmemory);andWMCmaybeengagedtoalesserextent(Rönnbergetal.,2013).Inthecontextofthismodel,signaldegradationreferstowhatevermaysubstantiallymodifytheavailableacousticsignalcuesofthetargetsignal(Rönnbergetal.,2008).Thesourcesofsignaldegradationmaybesingle(e.g.,noise)ormultiple(e.g.,combinedhearingaidsignalprocessingandnoiseforolderpersonswithhearingloss).Otherstudiessuggestthatforlistenerswithhearingloss,varioussignalprocessingalgorithmsimplementedinhearingaidsmaybeapotentialsourceofspeechsignaldegradations(Gatehouseetal.,2003,2006;Fooetal.,2007;SouzaandArehart,2015). Moderndigitalhearingaidsaretypicallyequippedwithawiderangeofsignalprocessingalgorithms,includingwidedynamicrangecompressionspeed,noisereduction,anddirectionalmicrophones(Dillon,1996,2001,2012;Kates,2008).Althoughmanyhearing-impairedpersonsmaybenefitfromsuchsignalprocessingalgorithms,theymayintroducedistortionsthatmaycounteractorreducetheintendedbenefitsforsomelisteners(Lunner,2003).Fast-actingwidedynamicrangecompression(fast-actingWDRC)isintendedtosimultaneouslyimprovetheaudibilityofweaksoundsandmaintainloudnessandcomfortforhigher-intensitysounds(Dillon,2001,2012).Moreover,improvedaudibilityrequiressignalmodification,andagreatermodificationoftheexpectedacousticsignalmayplacegreaterdemandonWMC(Rönnbergetal.,2008,2013).Fast-actingcompressionmaymodifythespeechamplitudeenvelope,whichmaycauseachallenginglisteningsituationforhearing-impairedpersonswhorelyonenvelopecues(Kates,2008;Dillon,2012).Inaddition,otherstudiessuggestthatfast-actingcompressionmayintroduceunwantedartifacts,whichmaycreategreatersignalmodification(Dillon,2001;Lunner,2003).Anumberofstudiesfoundarelationshipbetweencognitiveabilitiesandtheabilitytorecognizespeechinnoiseusingdifferenttypesofhearingaidsignalprocessingalgorithms.Inparticular,thesestudiesshowedthatWMCwasassociatedwithspeechrecognitioninnoiseperformancewhenspokensentenceswereamplifiedbyfast-actingwidedynamicrangecompression(Gatehouseetal.,2003,2006;Fooetal.,2007;LunnerandSundewall-Thorén,2007;Akeroyd,2008;Ohlenforstetal.,2015;SouzaandArehart,2015).OtherstudiesindicatedthatWMC,executivefunctionandcognitivespeedwererelatedtowidedynamicrangecompression(Schwartzetal.,2008;SouzaandArehart,2015)andtofrequencycompression(Arhartetal.,2013;SouzaandArehart,2015).Rudneretal.(2011)foundthathearingimpairedlistenerswithlowerWMCdemonstratedpoorbenefitwithfast-actingcompressionthanslow-actingcompression,comparedwithlistenerswithhigherworkingmemorywhobenefitedmorewithfast-actingcompression(seealsoFooetal.,2007).AstudybyGatehouseetal.(2003)indicatedthatcognitivecapacitywasassociatedwithspeechrecognitioninnoisewithfast-actingcompression.Thatis,therewasagreaterbenefitfromfast-actingcompressionforlistenerswithgreatercognitivecapacitythanthosewithpoorercognitiveabilityinmodulatednoisebackground.Infurtherstudy,thesameauthors(Gatehouseetal.,2006)reportedthatcognitivecapacityrelatedtospeechrecognitioninnoiseperformancedifferently(bothwithfastandslowactingcompression),suggestingthatfast-actingcompressionprovidedgreaterbenefitforlistenerswithlargercognitivecapacity,whileslow-actingprovidedbetterbenefitforlistenerswithsmallercognitivecapacity. Therationalefornoisereductionalgorithmsistoidentifyandsuppresstheadverseeffectsofbackgroundnoiseonspeechrecognitionandsoundqualitybyimprovingthesignal-to-noiseratios(SNRs)forlistenerswithhearingloss(Kates,2008;Dillon,2012).Although,noisereductionsystemsareintendedtoimprovespeechintelligibility,theymayalsoaffectspeechqualityandeaseoflisteningbyintroducingsignaldistortions(Kates,2008;Wangetal.,2009;SouzaandArehart,2015).AfewstudiesfoundarelationshipbetweenWMCandspokensentencesamplifiedbydigitalnoisereduction(Ngetal.,2013,2015;Arhartetal.,2015).Recently,Ngetal.(2013)conductedastudywheretheyexaminedtheeffectsofWMC,noiseandbinarymask-basednoisereductiononspeechrecognitionandrecall.TheyfoundthatlistenerswithlargerWMCwerebetteratrecallingmorewordsthanlistenerswithsmallerWMC,asaresultofnoisereductionprocessing.TheresultsshowedthatnoisereductioneffectivelysuppressedtheadverseeffectsofbackgroundnoiseonspeechrecallperformanceoflistenerswithlargerWMC.Inanotherrecentstudy,Ngetal.(2015)carriedoutaresearchwheretheytestedtheNon-idealversionofnoisereductioninafollow-upexperimentalbasedonessentiallythesameset-upwithelderlyhearingaidusers.Arhartetal.(2015)investigatedtheeffectsofidealbinarymask-basednoisereductionprocessingandseveralnon-idealversionsresultingfromthesystematicmanipulationsoftwoalgorithmicparameters.TheresultsshowedthatWMCwasapotentialpredictoroftheoverallspeechintelligibilityperformance;however,therewasnointeractionbetweenWMCandthelevelofsignaldistortionsinexplainingtheperformance.RelatedtoWMC,recentstudybyNeher(2014)examinedtheeffectsofWMCandhearinglossonresponsetonoisereductionforthethreelevelsofabinauralcoherencealgorithms(i.e.,none,moderate,andstrong).Theyfoundthatspeechrecognitionperformancewaspoorwhenspeechwasamplifiedwithnoisereduction,andtherewasnosignificantdifferencebetweenlistenerswithlargerWMCandthosewithsmallerWMC.Nevertheless,workingmemoryappearedtobeimportantforthefactthatparticipantswithsmallerWMCpreferredmoreaggressive(strong)noisereductionthanmoderatenoisereduction(intermsofspeechquality). Anumberofstudiessuggestedthattheassociationbetweenworkingmemoryandnoisereductionislikelytobestrongerforspeechrecognitionperformanceunderlow-contextspeechmaterialinmodulatedbackgroundnoiseandrelativelyweakerunderunmodulatedbackgroundnoise(Rudneretal.,2011;Ngetal.,2013).Afewstudiessupportingthisviewsuggestedthatsentencematerialmayplayanimportantrole.Forexample,shorterspeechsegmentsinrelativelyfavorablesignal-to-noiseratiosmayreducetheactivationforengagementforWMCcomparedwithlongerspeechsegmentswhichactivatethedeploymentofworkingmemorytoagreaterextent(Rudneretal.,2009;SouzaandArehart,2015).Previousstudieshavesuggestedthatprocessingspeed,WMCandselectiveattentionareessentialforlinguisticanalysisforspeechinchallenginglisteningsituations(Lunner,2003;Rönnbergetal.,2013). Thepresentstudyinvestigatedtherelationshipbetweencognitiveabilities(cognitiveprocessingspeed,WMC)andindividuallisteners’responsestodigitalsignalprocessingsettingsinnoise.Here,wemanipulatedhearingaidsignalprocessingandbackgroundnoise,resultinginsixconditions(seeTable1)inwhichHagermansentenceswerepresented.WehypothesizedthatcognitiveabilitieswouldbecorrelatedwithHagermansentenceintelligibilityinnoise.WewouldexpectstrongerassociationsbetweenWMCandspeechrecognitionwhenspeechisacousticallydegradedandweakerassociationswhenspeechisaudible.Numerousstudieshavesupportedthisview,showingstrongerrelationshipbetweenWMCandspeechcomprehensioninadverselisteningconditionsinhearing-impairedparticipants(Fooetal.,2007;Akeroyd,2008;Rudneretal.,2011;Rönnbergetal.,2013;Ohlenforstetal.,2015;SouzaandArehart,2015). TABLE1 TABLE1.Means(M)andStandardDeviations(SD)forspeechrecognitioninnoise,age,andcognitivemeasures. MaterialsandMethods Participants Atotalof194nativeSwedishspeakers(83womenand111men),aged33–80years(mean=60.75years,SD=8.89),withbilateral,symmetricalmildtomoderatesensorineuralhearinglosswhohadcompletedaLDTandsemanticword-pairspantest,andtheHagermanmatrixsentencetest(HagermanandKinnefors,1995)wereincludedinthisstudy.Thepure-toneaveragehearingthresholdforbothearsatfrequencies0.5,1,2,and4kHz(PTA4)was39.23dBHL(SD=19.64).TheparticipantswererandomlyselectedfromthehearingclinicpatientregistryattheUniversityHospitalofLinköping,wherethetestingtookplace,andwereinvitedtoparticipatebyletter.Regardingtheinclusioncriteria,allparticipantswerebilaterallyfittedwithdigitalhearingaidswithcommonfeaturessuchasWDRC,noisereduction,anddirectionalmicrophones.Allparticipantshadusedthehearingaidsforaminimumof1yearatthetimeoftesting.TheparticipantswerehealthynativeSwedishspeakers,withnormalvisionorcorrected-to-normalvision(wearersofglasses).Theparticipantshadnohistoryofotologicalproblemsorpsychologicaldisorders.ThestudywasapprovedbytheLinköpingregionalethicscommittee(Dnr:55-09T122-09).Allparticipantsgavewritteninformedconsenttoparticipate. CognitiveTests SemanticWordPairSpanTest Asemanticword-pairspantask(Rönnbergetal.,2016)isavisualworkingmemorytestthatdoesnotcomparedtoreadingspantestincludeanysyntacticelementsintheprocessingandstoragecomponents.Thetestmaterialconsistsofaseriesofword-pairs(suchas“Bun,Hippo”).Thelistlengthvariedfrom2to5,withthreetrialsperlength.Thetaskwastocomprehendwordandtorecalleitherthefirstorthefinalwordsinthedisplayedseriesofpairwords(Baddeleyetal.,1985).Theword-pairsweredisplayedonacomputerscreenataspeedof800msperword.Halfoftheword-pairswerelivingthing(e.g.,“cat”),andhalfoftheword-pairswerenolivingthing(e.g.,“paper”).Theparticipantswereinstructedtoreadandidentifythewordsrepresentingthelivingthingonthescreen,thenpressthebuttonstatinginwhichpositionthewordrepresentingthelivingthingwaspresented(e.g.,Left–Right).Topresstheleftbutton(green)ifthelivingthingisattheleftside,andpresstherightbutton(red)ifthelivingthingisattherightside.Aftereachsequenceofword-pair,theparticipantswereaskedtorepeatorallyandloudlyallthewordsthatwererecentlypresentedeitheratleftorright,andshouldbeinthecorrectorderofpresentation.Theparticipants’responseswerescoredbytheexperimenterintermsoftotalnumberofwordscorrectlyrecalled.Themaximumtotalscoreis42points. LexicalDecisionSpeedTest TheLDT(Rönnberg,1990;Rönnbergetal.,2016)wasusedtomeasuretheparticipants’cognitiveprocessingspeed.IntheLDT,eightywordspresentedvisuallyoneitematatimeonthecomputerscreenwereusedastestmaterial,40ofwhichwererealSwedishwordsand40werenot.Inthistask,participantshavetodecideasquicklyandaccuratelyaspossiblewhethervisuallydisplayedcombinationsoflettersarerealwordsornot,bypressingthebutton“yes”forrealwordor“no”fornoword/pseudoword.Forexample,whentheword(e.g.,“SNÖ,snow”)wasdisplayed,theparticipantpressed“yes,”thisisarealSwedishword,butwhentheletters(e.g.,“NÄKK”)wasdisplayed,theparticipantpressed“NO”thisisnotarealSwedishword.Theresponsetimewassetat5s,andtheworddisappearedwhentheparticipantspressedthebutton.Accuracyandspeedofperformanceweremeasuredbasedonthereactiontimesforthecorrecttrials. TheHagermanTest SpeechrecognitionwasmeasuredusingtheHagermanmatrixsentencetest(HagermanandKinnefors,1995).Threelistsof10sentences,highlyconstrainedintheirnature,withlowsemanticredundancy,wereusedastestmaterial.ThesentencesallconsistedoffiveSwedishwords,andhadthefollowingstructure:propernoun,verb,number,adjective,andobject,inthatorder.Thesentenceswerepresentedintwotypesofbackgroundnoise,steadystatenoise(SSN)orfour-talkerbabble(4TB).Anexperimentalhearingaidwiththreedifferentsignalprocessingfeatures,includingthreesignalprocessingfeatures(1)linearamplificationwithoutnoisereduction(NoP,baseline),(2)linearamplificationwithnoisereduction(NR)and(3)non-linearamplificationwithfast-actingcompression(Fast,withoutnoisereduction),fittedbasedoneachparticipant’saudiogramwasemployed.4TBconsistedofrecordingsoftwomaleandtwofemalenativeSwedishspeakersreadingdifferentparagraphsofanewspapertextandSSN(i.e.,stationaryspeech-shapednoisewiththesamelong-termaveragespectrumasthespeechmaterial)wereused.Thesetwotypesofbackgroundnoisewerepresentedatequalrootmeansquare(RMS)levels(Larsbyetal.,2005). BackgroundNoise Twotypesofbackgroundnoiseswereusedinthisstudy:SSNand4TB.SSNisthestationarynoisespeech-shapednoise(i.e.,similarlong-termaveragespectrumasHINTsentences,Hällgrenetal.,2006).The4TBisatypeofcompetingspeech,consistingofrecordingsoftwomalesandtwofemales’nativeSwedishspeakersreadingdifferentparagraphsofanewspapertext(HagermanandKinnefors,1995).Thespeechbabblewasintroduced3sbeforetheonsetofsentencestimuliandended1saftersentenceoffset. SignalProcessingAlgorithmsSetting NoiseReduction TheprimarygoalofbinarymaskingnoisereductionsystemsistocounteracttheeffectsofnoiseonspeechrecognitionandsoundqualitybyimprovingtheSNRforhearingaidusers(Wangetal.,2009;Dillon,2012;SouzaandArehart,2015).Thetime-frequencyunitswererecordedusinga64-channelgammatonefilterbankandtime-windowing.Theideahereisthatforeachtime-frequencyunit(inbinarymatrix),thereisadecreaseof10dB;thelocalSNRofeachgiventime-frequencyunitislessthan0dB,whichmeansthatthesignalenergyisgreaterthanthenoiseenergy.Inthisway,thereisanoptimizationoftheSNRbenefitsprovidedbybinarymasking(LiandWang,2009).Thepresentstudyusedabinarymaskingnoisereductionalgorithmasaprocessingcondition(Boldtetal.,2008),ratherthananon-idealestimationofnoisereduction. LinearAmplificationandCompression Audibilitywasprovidedbysettingupthehearingaidinsuchawaythatlinearamplificationwasbasedonthehearingthresholdsofeachsubject,asafunctionofvoicealignedcompression.Thesettingswerethenmodifiedusingsoftwareprogrammedforalinear1:1compressionratiocorrespondingtopure-toneinputlevelsrangingfrom30to90dBSPL.Subsequently,allsignalsandnoisesweredistributedinsuchawaythatthenoiselevelcorrespondedtotheregionofthelinearcompressionratio,ensuringthattherewasnoeffectofanycompressionkneepointoroutputlimiting.Theprimarygoalofvoicealignedcompression,knownascurvilinearWDRC,istoreducecompressionatahighinputlevel,andtoincreasecompressionatlowinputlevels,byusinglowercompressionkneepoints(rangingfrom30to40dBSPL,dependingonthefrequencyregionaffectedandthedegreeofhearingloss).TheloudnessdataofBuusandFlorentine(2001)hascontributedinparttothiscompressionmodel,whichfocusesonprovidingbettersoundquality,whilemaintainingspeechintelligibility,ratherthanfocusingsolelyonloudness.Theattacktimeof10msandreleasetimeof40ms(withacompressionratioof2:1inallchannels)wereemployedinfast-actingmultichannelWDRCconditions. Procedure Thedatainthisstudywerecollectedaspartofalargerinvestigation(Rönnbergetal.,2016),whichinvolvedthreesessionsofapproximately3heach.Dataforthisstudywerecollectedduringthefirstsession(backgrounddataandpure-toneaveragehearingthresholddata)andthethirdsession(Hagermantest).Alltestingwasadministeredindividuallyduringa6-weekperiod.Visioncorrectionwasusedwhennecessary. TheHagermansentencestesttookplaceinasound-treatedtestbooth,andtheparticipantssatonachairatadistanceof1mfromasingleloudspeaker.Themasterhearingaidwasimplementedinananechoicbox(BrüëlandKjaer,type4232),containinganexperimentalwellcheckedhearingaid.Thisexperimentalhearingaidwasfittedbasedoneachparticipant’saudiogram.Thisenabledaudibility,andcontroloftargetsignalprocessingsettingssuchas:linearamplification(withoutnoisereduction,andwithnoisereduction(Wangetal.,2009;Ngetal.,2013)andfast-actingcompression(Dillon,2001,2012).TwotypesofbackgroundnoisewerepresentedatequalRMSlevels;thesewerethemodulatedspeech-shapednoisebasedonthemodulatedpatternof4TB(consistingofrecordingsoftwomaleandtwofemalenativespeakersofSwedishreadingdifferentparagraphsofanewspapertext)andthesteadystatespeech-shapednoise. Thesehearingaidfeaturesandthebackgroundnoiseweremanipulatedtoexaminethepredictionsofaidedspeechrecognitioninnoiseinwhichcognitionabilitiesarechallenged.Linearamplificationwithoutbinarynoisereductions(NoP)servedasabaselinetoclarifythedifferencebetweenlinearamplificationwithbinaryNRandnon-linearfast-actingcompression(withNR)intermsofbenefits. Aftercalibratingthesetup,foreachparticipant,abaselinemeasurewasperformedusinglinearamplificationwithoutbinarymaskingnoisereductionpriortoapplyinglinearamplificationwithbinarymaskingnoisereductionandthenon-linearamplificationfast-actingcompression(withoutnoisereduction)setting.Thetestingbeganwithtwolistsof10sentencesusedaspracticebeforethetestsession.Eachpracticesentencewaspresentedoneatatimeinarandomizedorderataconstant65dBSPLintwobackgroundnoiseconditions.Theorderinwhichtheconditionsweretestedwasfullyrandomizedacrossparticipantsandbetweentests.Eachparticipantwastestedindividually,andforeachtestandparticipant,aninitialSNRof0dBwasselectedtofacilitatethefamiliarizationperiodwithasomewhateasyrecognitiontask.Intheexperimentalsession,Hagermansentenceswerepresentedasdescribedinthepracticesession.Threelistsof10sentenceseachwerepresentedtoeachparticipantinarandomizedorderforeachcondition.Foreachsentence,theparticipantwasaskedtorepeatasmanyofthewordsaspossible.Thenumberofwordscorrectlyrepeatedwasrecordedonacomputerterminal.Onthebasisofwordscores,theSNRwasautomaticallyadaptedusingastandardalgorithmthatappliesaninterleavedtechniquetodetermineindividualSNRsfor50and80%correctlevelsofperformance,respectively(Brand,2000).The50%thresholdrepresents2.5wordscorrectoutoffive,and4wordscorrectoutoffivecorrespondsto80%threshold.TherandomizationprocesswasbeneficialbecauseitreducesthepossibilityofmemorizingorguessingthesentenceandreducestheoveralllearningeffectandthusincreasesthedegreeofreliabilityoftheHagermantest.Althoughthespeechsignalwasfixed,thenoiselevelwasadaptivelyadjustedtomatchtheappropriateSNR. DataAnalysis Dataanalysiswasconductedusinga3×2within-groupanalysisofvariancedesign,withdigitalsignalprocessingalgorithmsetting(noprocessing,noisereduction,andfast-actingcompression)andnoisetype(SSNand4TB)asindependentvariables,andspeechrecognitioninnoiseperformanceasthedependentvariable.Therelationshipbetweenthemeasuresofcognitivespeed,WMCandspeechrecognitioninnoiseperformancewasanalyzedusingPearsoncorrelations.Giventhatalargenumberofcorrelationswerecomputed,theBonferronicorrectionwasappliedinordertocontrolthechanceofcommittingaTypeIerrorswhichcouldincrease.ToobtaintheBonferronicorrected/adjustedp-value,theoriginalα-value[criticalvalueofp(0.05)wasdividedbythenumberofcomparisonsonthedependentvariable(i.e.,36].Thisyieldsanewp-value(0.0014)thatcontrolsforfamily-wiseTypeIerrorrate. Aseriesofhierarchicalmultiplelinearregressionanalyseswereconductedinaidedsixconditions,respectively,performanceonHagermansentencestest,underthefollowingtestconditions:(1)Linearamplificationwithoutnoisereduction(NoP)inanunmodulatednoisebackground;(2)Linearamplificationcombinedwithnoisereduction(NR)inanunmodulatednoisebackground;(3)Linearamplificationwithoutnoisereduction(NoP)inamulti-talkerbackground;(4)Linearamplificationcombinedwithnoisereduction(NR)inamulti-talkerbackground;(5)Fast-actingcompression(Fast)signalprocessinginanunmodulatednoisebackground(nonoisereduction);(6)Fast-actingcompression(Fast)signalprocessinginamulti-talkerbackground(nonoisereduction,Rönnbergetal.,2016),toexaminetheextenttowhichcognitivespeedandWMCmayrelatetoaidedspeechrecognitionperformanceinnoise.Allthesignificancelevelsweresetatp<0.05,andP<0.01(two-tailed).AllanalyseswereperformedusingSPSSstatisticalpackage23.0forwindows. Results Meansandstandarddeviationsforthepredictor(cognitivespeedandworkingmemory)andthemeanSNR(dB)forspeechrecognitioninnoiseinthevariousconditionsareshowninTable1.LowerSNRscoresmeansbetterspeechrecognitionperformancebecauselowSNRshowsthattheparticipantscorrectlyidentifiedthespeechsignaldespiteahighlevelofbackgroundnoise,whilehighSNRscoresindicatethatthesentencescouldonlybecorrectlyrepeatedatlownoiselevels(HagermanandKinnefors,1995).ThescoringmethodfortheHagermansentencesboostedalevelofperformancewhere80%(i.e.,fouroutoffive)ofthewordsinanyparticularsentencewererecognizedcorrectly.Thatis,optimalperformancecanbefoundevenifonewordineachsentenceismeaninglessduetounder-amplificationormasking.Nevertheless,theSNRatwhich50%ofwordscorrectlyrecognized(or2.5wordsoutof5words)wasappliedforthecalculationofthethresholdsinaccordancewithPlompandMimpen(1979). SpeechRecognitioninNoisePerformance Atwo-way,within-participantanalysisofvariance,whichincludedthedigitalsignalprocessingalgorithm(noprocessing,noisereduction,andfast-actingcompression)andnoisetype(SSNand4TB),wasconducted.Theresultsrevealedamaineffectofthedigitalsignalprocessingalgorithm,F(2,386)=2137.82,p<0.001,ηp2=0.91,inwhichthemeanSNRforthenoisereductioncondition(-6.81dB,SE=0.13)waslowerthanthatforthenoprocessingcondition(-1.33dB,SE=0.13)andthefast-actingcompressioncondition(-0.47dBSNR,SE=0.14).Posthoct-tests(Bonferroniadjustedformultiplecomparisons)showedthatthetestperformanceinthelinearamplificationwithnoisereductionconditionwasbetter(i.e.,withaloweraverageSNR)thanthatinthelinearamplificationwithoutnoisereductioncondition(p<0.001)(Wangetal.,2009;Ngetal.,2013).Inaddition,performanceinthelinearamplificationwithnoisereductionconditionwasbetterthanthatinthenon-linearamplificationwithfast-actingcompressioncondition(p<0.001).Thissuggeststhatlinearamplificationresultedinabetterspeechrecognitionperformancethannon-linearamplificationwithfast-actingcompression.Therewasalsoasignificantmaineffectofthenoisetype,F(1,193)=3637.09,p<0.001,ηp2=0.95,inwhichthemeanSNRintheSSNcondition(-5.25dBSNR,SE=0.13)waslowerthanthatinthe4TBcondition(-0.48dBSNR,SE=0.12).Thisindicatesthatcompetingspeechnoisehasastrongermaskingeffectthanstationarynoise. Interestingly,asignificanttwo-wayinteractioneffectbetweenthedigitalsignalprocessingalgorithmandthenoisetypewasfound,F(2,386)=122.00,p<0.001,ηp2=0.38(Figure1).Furtherinvestigationoftheinteractionusingposthoct-testingwithBonferroniadjustmentformultiplecomparisonsshowedthatthedifferencebetweenspeechrecognitionperformanceinSSNandin4TBwasrelativelynotsignificant(p>0.05)whenbinarymaskingnoisereductionwasapplied.Thatis,whenNRwasapplied,thepresenceofnoiseeffectwasnolongersignificant,possiblyduetotheeffectivenessofNRatreducingthemaskingeffectofnoise(Ngetal.,2013),comparedtowhenfast-actingcompressionwasapplied,wherethedifferencebetweenSSNand4TBwassignificant(p<0.05,relativetoNoPbaseline).AsobservedinFigures1,2,thisinteractionhasbeendrivenbythefactthatthebackgroundnoisehasalargereffectinthenoprocessingcondition(differenceof-5.5)andthefast-actingcompression(difference-5.48)comparedtotheinthenoisereductioncondition(differenceof-3.32).Thismaysuggestthatbackgroundnoiseratherthancognitiveabilityisthekeyfactorinfluencingtheinteraction(Larsbyetal.,2005).Wemaysuggestthattherewasarelativelysmallerdependenceoncognitiveabilitiesinthenoisereductionconditionandarelativelylargerdependenceoncognitiveabilitiesinfast-actingcompressionduetothedetrimentalmaskingeffectsofthe4TBcondition(e.g.,Ngetal.,2013). FIGURE1 FIGURE1.Significanttwo-wayinteractionbetweenhearingaidsignalprocessingsetting(noisereductionandfast-actingcompression)andnoisetype[steadystatenoise(SSN),four-talkerbabble(4TB)]inaidedconditionswithHagermantest(relativetoNoPbaseline,errorbarsrepresentstandarderrors). FIGURE2 FIGURE2.Atwo-wayinteractioneffectbetweenhearingaidsignalprocessingsetting(linearamplificationwithoutnoisereduction,linearamplificationwithnoisereductionandfast-actingcompression)andnoisetype(SSN,4TB)inaidedconditionswithHagermantestareshown.TherewasasignificantdifferencebetweenSSNand4TB(i.e.,indB,intermsofspeechrecognitionperformance)inlinearamplificationwithoutnoisereduction,andinnon-linearamplificationfast-actingcompressioncondition.However,therewasnosignificantdifferencebetweenSSNand4TBinlinearamplificationwithnoisereductioncondition. Thenegativemaskingeffectsof4TBmighthavedisruptedanddelayedtheamplificationeffectivenessoffast-actingcompression(e.g.,thecompressorspeed:attacktimeorreleasetime)comparedtonoisereduction.ThisstudyindicatesthatperformancewasbetterwhenspokensentenceswerepresentedinSSNwithanoisereductionalgorithm.Noisereductionappearstobeeffectiveinreducingstablebackgroundnoise.ThisisinlinewithrecentstudiesthatsuggestthatnoisereductionprovidesgreaterbenefitsinSSNconditions(Ngetal.,2013;Arhartetal.,2015). Correlations Pearson’scorrelationscoefficientwascalculatedtoexaminetherelationshipbetweenage,scoresontheLDTandtheSWPST,andperformanceontheHagermansentencestestforthesixconditions.AgesignificantlycorrelatedwiththeLDTscores(r=0.19,p<0.05)andtheSWPSTscores(r=-0.30,p<0.01).Thecorrelationsbetweenageandthecognitivetestssuggestthataspeoplebecomeolder,cognitiveperformancebecomesworse(e.g.,Salthouse,1996).Thatis,advancedagecorrespondstolongerreactiontimesandlowerWMC(Rönnbergetal.,1989;Rönnberg,1990;Larsbyetal.,2005).AgealsosignificantlycorrelatedwiththeHagermansentencestestperformanceunderallsixaidedconditions.Thisisinlinepreviousstudies(e.g.,Larsbyetal.,2005).TheLDTscoresalsosignificantlycorrelatedwiththeHagermansentencestestperformanceunderallconditionswhenNoP,NR,andfast-actingcompressionwereused.Thisfindingindicatesthatcognitiveprocessingspeedmayberelativelyassociatedwithbothnoisereductionandfast-actingactingcompressionintermsofspeechrecognitioninnoiseperformance.Thispatternofcorrelationsdemonstratestheimportanceofcognitivespeedintheabilityofhearingaiduserstorecognizespeechinnoise. Theperformanceonthesemanticword-pairspanscoresnegativelyandsignificantlycorrelatedwiththeHagermansentencestestperformanceunderonly5outof6aidedconditions,thatis,whenNoP,NR,andfast-actingcompressionwereused.ThisisinlinewithpreviousstudiesthatsuggestedthatWMCwasrelatedtospeechrecognitioninnoiseperformancewithNR(Ngetal.,2013;Arhartetal.,2015)andfast-actingcompression(LunnerandSundewall-Thorén,2007;Rudneretal.,2011).However,thefactthatthesemanticword-pairspandidnotsignificantlycorrelatewiththeHagermansentencestestperformancewhentherewasnoprocessingandinSSNwithfast-actingcompressioncontrastswiththefindingsofGatehouseetal.(2006)andLunnerandSundewall-Thorén(2007;seealsoNgetal.,2013).Thelexicaldecisionspeedandsemanticword-pairspansignificantlycorrelated,showingthatalongerreactiontimeonspeechrecognitionperformanceisassociatedwithlowerWMC. ResultsafterBonferroniCorrectionWasApplied WhenBonferronicorrectionwasapplied,anewp-valuewasobtained(0.0014),andtodeterminewhetheranyofthecorrectionswassignificant,thep-valuemustbep≤0.001.Thecorrelationsbetweenage,theLDTscores,theSWPSTscoresandtheHagermansentencestestscoreswhenBonferronicorrectionwasusedareshowninTable2.Surprisingly,agedidnotsignificantlycorrelatewiththeLDTscores(r=0.19,p>0.05)butcorrelatedwiththeSWPSTscores(r=-0.30,p<0.05)atthevergeofsignificance.However,agesignificantlycorrelatedwiththeHagermansentencestestperformanceunderallsixaidedconditions(p<0.05,seeTable2).Thisisconsistentwithpreviousstudiesthatindicatethattherewasanage-relateddeclineinspeechrecognitioninadverselisteninginolderadultscomparedtoyoungerlisteners(Larsbyetal.,2008;Gordon-SalantandCole,2016).Interestingly,theLDTscoressignificantlycorrelatedwiththeHagermansentencestestperformanceunder5outof6aidedconditions(p<0.05)whenNoP,NR,andfast-actingcompression(inSSN)wereused.TheSWPSTscoressignificantlycorrelatedwiththeHagermansentencestestperformancein3outof6aidedconditions.Inaddition,thecorrelationbetweentheLDTscoresandtheSWPSTscoresdidnotsignificantlycorrelate(p>0.05),whichcontrastswithpreviousstudies(Larsbyetal.,2005).Insummary,verbalinformationprocessingspeed(LDTscores)wasassociatedwithalargebenefitfrombinarymaskingNRandfromfast-actingWDRC(inSSN).WMC(SWPSTscores)wasrelatedtoalargerbenefitfrombinarymaskingNRbutnotrelatedtofast-actingWDRCoutcomes. TABLE2 TABLE2.Correlationmatrixofselectedpredictorvariablesandspeechrecognitionperformancemeasures(Hagermantest)afterapplyingBonferronicorrections. Inthepresentstudy,thefocuswasontheinvestigationofhowcognitiveabilities(i.e.,cognitivespeed,WMC)mayrelatetoaidedspeechrecognitionperformanceinadverselisteningconditions.ToperformamorerobusttestofthepredictionconcerningtherelativeinvolvementofcognitivespeedandWMCaspredictorsofaidedspeechrecognitioninnoiseundersixaidedconditions,weperformedaseriesofhierarchicalmultipleregressionanalyses. HierarchicalMultipleRegressionAnalysis ToinvestigatetherelativeroleofcognitivespeedandWMCinexplainingthevarianceinaidedspeechrecognitioninnoiseperformanceundersixaidedconditions,agewascontrolledtoeliminateitsconfoundingeffects.Aftercontrollingforage,aseriesofhierarchicalregressionswasappliedundersixaidedconditions,andineachregression,agewasenteredinstep1,andtheLDTandSWPSTwereenteredinstep2.TheresultsofthesehierarchicalregressionsareshowninTables3,4.AsshowninTables3,4,theLDTscorespredictedspeechrecognitionin5outof6aidedconditionsaftercontrollingforage,thatis,in(1)SSNwithNoP,(2)4TBwithNoP,(3)SSNwithNR,(4)4TBwithNR,and(5)SSNwithfast-actingcompression.However,theLDTscoresdidnotpredictspeechrecognitionin4TBwithfast-actingcompression(p>0.05).TheSWPSTscorespredictedspeechrecognitionperformanceinonly1aidedcondition(p<0.05),beyondageandtheLDT.Thiscontrastswithpreviousstudiesthatfoundthatworkingmemorypredictedalargeportionofvariancewhensentenceswerepresentedinmodulatednoise(Gatehouseetal.,2003;Akeroyd,2008;Rudneretal.,2011;SouzaandArehart,2015).However,agesignificantlypredictedthedeclineinspeechrecognitioninallsixconditionsandexplainedalargepartofthevariancewhentheHagermansentenceswerepresentedinsteadystateand4TBnoisebackgroundregardlessofthehearingaidsignalprocessingalgorithmsapplied. TABLE3 TABLE3.HierarchicalregressionspredictingspeechrecognitionperformanceinSSN,4TBconditionswithandwithoutnoisereductionprocessing. TABLE4 TABLE4.HierarchicalregressionspredictingspeechrecognitionperformanceinSSN,4TBconditions,withfast-actingcompression. Discussion Thepurposeofthepresentstudywastoexaminetheextenttowhichcognitiveabilities(cognitivespeed,andWMC)mayrelatetoindividuallisteners’responsestodigitalsignalprocessingsettingsinadverselisteningconditions.Weconsideradverselisteningconditionsverygenerallytomeananybackgroundnoise(e.g.,4TB)and/ormodificationsoftheacousticsignal(inthisstudy,bynoisereductionandfast-actingcompression)thatmayoffsetthelistener’sperformance(Larsbyetal.,2005;Souzaetal.,2015a,b).Overall,ourfindingsareinlinewithpreviousstudiesinshowingthatcognitiveabilitiessuchasWMCandcognitiveprocessingspeedplayanimportantroleineffectivespeechrecognitionindifficultlisteningenvironments(Akeroyd,2008;Rönnbergetal.,2008,2013,2016;Rudneretal.,2011;SouzaandArehart,2015)anddeclinewithage(Salthouse,1996,2000).Arecentinformationprocessingmodel(ELU;Rönnbergetal.,2013)providesatheoreticalbackgroundforabetterunderstandingoftherelationshipobservedbetweencognitiveabilitiesandspeechrecognitioninnoise.Thismodelsuggeststhatwhenthespeechsignalispresentedclearlywithoutdistortion,thelistenerwillrapidlyandeffectivelyperformalexicalmatchwiththeengagementofcognitiveresourcestoalesserextent(i.e.,WMC,processingspeed).Incontrast,ifthespeechsignalisdistorted(causedbyeitherbackgroundnoiseorunwantedsignalprocessingartifacts),thenlexicalmatchingmaybemoredifficult,andthelistenermayhavetoengagehisorhercognitiveabilitytoagreaterextenttounlockthemeaningofthemessageortofillinthemissingacousticinformation.OurresultsareconsistentwiththeassumptionsoftheELUmodel. TheEffectsofHearingAidSignalProcessingandBackgroundNoise Recentstudieshavesuggestedthatadvancesinthehearingaidindustryareofgreatpotentialbenefittohearing-impairedpersonswhocommunicateusingtheauditorychannel(Dillon,2012;Ngetal.,2013;Souzaetal.,2015a,b).Insupportofthissuggestion,severalstudieshaveshownrelativebenefitsfromfast-actingcompression(Gatehouseetal.,2006;Fooetal.,2007;Akeroyd,2008;Rudneretal.,2011;Souzaetal.,2015a,b)andfrombinarymaskednoisereduction(Wangetal.,2009;Ngetal.,2013;Rönnbergetal.,2016;Souzaetal.,2015b)forpersonswithhearingimpairment.Theresultsofthepresentstudyshowedthatbinarymaskingnoisereductionprovidesagreaterbenefitthanfast-actingcompressioninadverselisteningconditions(Rönnbergetal.,2016).Noisereductionsignalprocessingreducedtheadverseeffectofmodulatednoiseonspeechrecognitionperformanceforlistenerswithgoodcognitiveability(SouzaandArehart,2015).Thismaysuggestthatthelexicalmatchingoftargetspeechinformationinlong-termmemorybecomeslessexplicitandlesscognitivelytaxing(Rönnbergetal.,2008).However,listenerswithpoorcognitiveabilitiesmaynotbenefitfromnoisereductiontoagreaterextentbecauseanysignificantbenefitsprovidedbythesignalprocessingmighthavebeencanceledoutbytheadditionalcognitivedemandexercisedbythedistortionscreatedbysignalprocessingartifacts(Lunner,2003;Rudneretal.,2011).Ontheotherhand,fast-actingcompressionpresentedlimitedbenefits(relativetotheNoPbaseline),insupportofpreviousstudiesthatsuggestedthatthefast-actingcompressionsettingmayintroducesignaldistortionsoralterthespeechenvelope,resultinginaphonologicalmismatchandhencedependenceonthelisteners’cognitivecapacities(Lunner,2003;Akeroyd,2008;SouzaandArehart,2015).Giventhatbinarymaskingnoisereductionismoreaggressiveatreducingtheeffectofbackgroundnoise,itmayhavelesserspeechsignalmodificationeffectsthanfast-actingcompressionintermsofspeechintelligibility(Wangetal.,2009). Asobservedinthetwo-wayinteraction,itshouldbenotedthatthisinteractionwasdrivenbythefactthatthebackgroundnoisehasastrongereffectinthenoprocessingconditionandthefast-actingcompressionconditioncomparedtonoisereductioncondition(seetheSNRdifferences;Figure2).Thismaysuggestthatbackgroundnoiseratherthancognitiveabilityisthekeyfactorinfluencingtheinteractioneffectofsignalprocessingandthenoisetypeonspeechrecognitionperformance(relativetotheNoPbaseline;Larsbyetal.,2005).Thepresentfindingsshowedthatwhennoisereductionwasapplied,speechrecognitionperformancewasnotsignificantlydifferentfromeitherthatinSSNorin4TB.Thatis,whennoisereductionwasused,themaineffectofnoisewasnolongersignificant.Itmaysuggestthattherewasrelativelylesserdependenceoncognitiveresourcesandmoredependenceonhearingaidsignalprocessing.Ontheotherhand,speechrecognitionperformancewassignificantlydifferentinSSNandin4TBwhenfast-actingcompressionwasapplied(relativetoNoPbaseline,Figures1,2).Thatis,whenfast-actingcompressionwasapplied,the4TBdisruptivemaskingeffectremainedrelativelysignificant,resultinginmoredependenceoncognitiveresourcestoagreaterextent(ELUmodel,Rönnbergetal.,2008,2013).Thefindingsalsoshowedthat4TBbackgroundnoisewasmoredisruptivethanSSN,affectingtheeasewithwhichalexicalmatchcanbemadeandtaxingcognitiveresources(Larsbyetal.,2005).Moreover,multiple-talkerbabbledelayedandsubstantiallyreducedthebenefitobtainedfromfast-actingcompressioncomparedtonoisereduction(relativetotheNoPbaseline;Ngetal.,2013).Ourresultsmayalsosuggestthat4TBmaybeoneofthemajorcontributorstoasourceofsignaldegradationinspeechrecognitionperformance(seeLarsbyetal.,2005;Rudneretal.,2011).Moreover,giventhatthe4TBbackgroundnoisealsoconsistedofwordsspokenbytwomaleandtwofemalenativeSwedishspeakersinthepresentstudy,theuseofnativespeakersmighthavestrongermaskingeffectsonspeechwithfast-actingcompressionthanwithnoisereduction.Ourresultsmaysuggestthatthecombinationoffast-actingcompressionand4TBnoisemayconstituteamajorsourceofdegradationthatcontributestoanimpoverishmentoftheperformanceonthespeechrecognitiontaskortothepoorbenefitfromthehearinginstrument.Thatis,thecombinationoffast-actingcompression-4TBmayinfluencetheengagementofexplicitcognitiveresourcestoagreaterextentthanthatofnoisereduction-SSNdoes.Thisfindingisinagreementwithpreviousstudies(Larsbyetal.,2005,2008;Akeroyd,2008;Ngetal.,2013).Nevertheless,thecombinationofbinarymaskingnoisereductionandSSNmayconstituteaminorsourceofspeechsignaldegradationforhearing-impairedpersons(Ngetal.,2013;Rönnbergetal.,2016).Wemaysuggestthatolderadulthearingaidusersmaybemorevulnerabletothesignaldegradationcreatedbyacombinationoftheunwantedeffectsoffast-actingcompressionand4TBnoise. TheEffectsofCognitiveSpeedandWorkingMemory Thecurrentfindingsareconsistentwiththeassumptionthatsignaldistortionfromthecombinationoffast-actingWDRCand4TBconstitutesamajorsourceofsignaldegradationthatresultsinanimpoverishedrepresentationattheauditoryperiphery.Inthecontextoftheinformationprocessingmodelsforspeechperception,listenersundergoingthesemultiplesourcesofsignaldegradationmustassignmoreprocessingresourcestopriorprocessingphases(Rönnbergetal.,2008;Lunneretal.,2009).Thisdistributionofresourcesmayimpoverishthesubsequentprocessesrequiredfortheidentificationofthelinguisticcontentofthesentencematerials.Then,alistenermayberequiredtodependonhis/herWMCforeffectiveprocessingofthedegradedspeechsignalandcomprehensionofthemeaningofthemessage.Nevertheless,whentheWMCislimited,thisprocessingmaybemoredifficultormayfail.OurfindingsshowthattheWMCscores(SWPST)andcognitiveprocessingspeedscores(LDT)didnotsignificantlycorrelatewithspeechintelligibilityonlyin4TBwithfast-actingWDRCafterusingBonferronicorrectionandthattheydidnotsignificantlypredicttheperformanceofspeechrecognitionin4TBwithfast-actingcompression.Inthecaseofworkingmemory,thisfindingcontrastswiththepreviouslyconfirmedrelationshipbetweenworkingmemoryandfast-actingcompressioninamodulatednoisebackground(Gatehouseetal.,2003,2006;Fooetal.,2007;Rudneretal.,2011).Thiscouldbebecausetheamountofresourcestobeallocatedtoprocessingandstoragemighthavebeenlimitedormighthaveexceededtheavailablecapacity,whichmayresultintaxerrors,lossofinformationorslowerprocessing.Ifwemaypostulatethatstrongerfast-actingWDRCprocessingresultsinagreatermodificationoftheinputsignal,thenwewillexpectarelationshipbetweenWMC(SWPSTscores)andbetterspeechintelligibility(greaterbenefit)withfast-actingWDRC(Rudneretal.,2011);however,thiswasnotthecaseinboththecorrelationsandtheregressionresults(seeTables2–4).Apossiblereasonforthiscouldbethatstrongerfast-actingWDRCprocessingmaybehavingconcurrenteffects:improvingtheaudibilityofthespeechsignalwhilemaintainingloudnesscomfort(byapplyinggainasafunctionofintensity,withalowergainappliedtohigherinputlevels)andintroducingunwantedprocessingartifactsthatmaycreatemoredistortionsratherthanlessaggressiveprocessing(Dillon,2001;Lunner,2003).PossiblytheneteffectoftheseopposingfactorscontributestotheweakassociationbetweentheSWPSTandfast-actingWDRC(Dillon,2012). Ontheotherhand,ourresultsindicatethattheeffectsofacombinationofnoisereductionandSSNmayconstituteaminorsourceofdegradation,contributingtoagreaterbenefitorbetterspeechintelligibility.Thatis,thereweresignificantassociationsbetweenWMC(SWPSTscores)andthebinarymaskingNRoutcomesandbetweenthecognitiveprocessingspeed(LDTscores)andthebinarymaskingNRoutcomes(seeTable2).ThismaybeviewedviatheELUmodel,whichassumesalargerinfluenceofcognitiveability(e.g.,WMC)whenthephonologicalformoftheperceivedlanguagesignaldoesnotmatchthephonologicalrepresentationsstoredinlong-termmemory.WemaypostulatethatstrongerbinarymaskingNRprocessingresultsinasignificantmodificationoftheinputsignal;wewouldexpectarelationshipbetweenworkingmemoryandbetterspeechintelligibility(orgreaterbenefitsfromNRprocessing),andthiswasthecaseinthepresentstudy.ApossibleexplanationforthiscouldbethatstrongerbinarymaskingNRprocessingmayhavetwobalancedeffects:improvingtheaudibilityofthespeechsignal(asaresultofaneffectivenoisesuppression),introducingrelativelylesserdistortionbutmoreaggressiveprocessing(relativelylessexplicitcognitiveresources;Neher,2014).Theresultsofthepresentstudyshowthatcognitiveabilityisanimportantfactorinaidedspeechrecognitioninadverselisteningconditionsforpersonswithhearingimpairment. EffectsofAge TherelationshipbetweenageandthemeasureofcognitiveprocessingspeedwasobservedbeforeapplyingBonferronicorrectionbutnotafter.Thepatternofthisrelationshipwascontrarytoourexpectations,insupportofpreviousstudiesthatindicatethatprocessingspeeddeclineswithage(Salthouse,1996;Lunner,2003;Larsbyetal.,2005).However,arelationshipbetweenageandthemeasuresofworkingmemorywasobservedbeforeandafterapplyingBonferronicorrection,suggestingadeclineinWMCwithage(Salthouse,1996).Asexpected,theeffectsofageonspeechrecognitioninnoiseperformancewereobservedbeforeandaftertheuseofBonferronicorrection.Thispatternoftherelationshipisinsupportofpreviousstudiesshowingpoorerperformanceforolderadultlistenerscomparedtoyoungerlisteners(Gordon-SalantandFitzgibbons,2001;Gordon-SalantandCole,2016).Theeffectofageonspeechrecognitioninnoiseperformanceisalsounderlinedbytheresultsofthehierarchicalregressionanalysis,whichshowedthatage,aboveandbeyondtheeffectsofthecognitiveprocessingspeedandworkingmemory,contributedtovarianceintheintelligibilityscores,suggestingthathearingaidusersmayhaveage-relateddegradationsinhigher-levelprocessingthatextendbeyondwhatiscapturedintheSWPSTandtheSDT.Thismaysuggestthatthereareotherfactorsassociatedwithagingotherthancognitivefunctioningthatmaybeinvolvedintheage-relateddeclineinspeechrecognitionamongolderhearingaidusers(BaltesandLindenberger,1997;WingfieldandTun,2001;Larsbyetal.,2008). Conclusion Thepresentstudyaddstopreviousstudiesanewwayofviewingtherelationshipbetweencognitiveabilitiesandbinarymaskingnoisereductionandfast-actingWDCforspeechrecognitioninnoiseforhearingaidusers(Lunner,2003;Akeroyd,2008;Ngetal.,2013;SouzaandArehart,2015).Theresultsshowedthataftercontrollingforage,cognitiveprocessingspeedwasabetterpredictorofspeechintelligibilityinnoise(inbothSSNand4TB),suggestingasignificantassociationbetweencognitiveprocessingspeed(measuredbyLDT)andbinarymaskingNRandfast-actingcompression(inSSN).However,therewereweakerassociationsbetweenWMC(measuredbytheSWPST)andspeechintelligibilityinnoisewithNR,andnoassociationwhenfast-actingWDRCwasused.Thatis,WMCwasaweakerpredictorofspeechintelligibilityinnoise.Thefindingsmighthavebeendifferentiftheparticipantshadbeenprovidedwithtrainingand/orallowedtoacclimatizetobinarymaskingnoisereductionorfast-actingcompression(Rudneretal.,2011).Takentogether,theresultssuggestthatassessingtheeffectsofcognitiveprocessingspeed,WMC,andhearingaidsignalprocessingsettingsinnoisemayprovideimportantinsightsintothesourceofhearingaidusers’complaintsofdifficultyrecognizingspeechinnoise. EthicsStatement Thesubjectswereinformedaboutthevoluntariness,confidentialityandtheywerefreetodeclineparticipationatanytime.Theyalsofilledupawritteninformedconsentforminwhichtheygivetheresearcherstherighttocollectandrestorepersonalinformationrelevanttothestudy.Personalinformationwascollectedandstoredinawaythatparticipant’sintegritywasmaximized(Breakwelletal.,2006). AuthorContributions WYhassubstantiallycontributedtothefollowingphasesofthepresentstudy:theconception,thedesign,theacquisition,analysis,andtheinterpretationofdata;thedraftandcriticalrevision;thefinalapprovaloftheversiontobepublished.Theauthorisaccountableforallaspectsofthiswork. Funding ThisworkwassupportedbyaLinnaeusCentreHearingandDeafness(grantnumber349-2007-8654)fromtheSwedishResearchCouncil. ConflictofInterestStatement Theauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments TheauthorthanksJerkerRönnbergandHenrikDanielssonfortheirinsightfulcommentsonthismanuscript.MathiasHällgren(fromtheDepartmentofTechnicalAudiology,LinköpingUniversity)forhistechnicalsupport;TomasBjuvmarandHelenaTorlofson(fromtheHearingClinic,UniversityHospital,Linköping);ElaineNg(fromtheSwedishInstituteforDisabilityResearch,LinköpingUniversity)forherassistanceindatacollection;andThomasKarlsson,BjörnLidestam,ShahramMoradi,RachelJaneEllis,ÖrjanDahlström,andEmilHolmerfortheirsupport.Theauthorwouldliketothankthreereviewersfortheirhelpfulandinsightfulcommentsonthismanuscript. References Akeroyd,M.A.(2008).Areindividualdifferencesinspeechreceptionrelatedtoindividualdifferencesincognitiveability?Asurveyoftwentyexperimentalstudieswithnormalandhearing-impairedadults.Int.J.Audiol.47(Suppl.2),S53–S71.doi:10.1080/14992020802301142 PubMedAbstract|CrossRefFullText|GoogleScholar Arhart,K.H.,Souza,P.,Baca,R.,andKates,J.M.(2013).Workingmemory,age,andhearingloss:susceptibilitytohearingaiddistortion.EarHear.34,251–260.doi:10.1097/AUD.0b013e318271aa5e PubMedAbstract|CrossRefFullText|GoogleScholar Arhart,K.H.,Souza,P.,Kates,J.,Lunner,T.,andPedersen,M.S.(2015).Relationshipamongsignalfidelity,hearingloss,andworkingmemoryfordigitalnoisesuppression.EarHear36,505–516.doi:10.1097/AUD.0000000000000173 PubMedAbstract|CrossRefFullText|GoogleScholar Baddeley,A.(2012).Workingmemory:theories,models,andcontroversies.Annu.Rev.Psychol.63,1–29.doi:10.1146/annurev-psych-120710-100422 PubMedAbstract|CrossRefFullText|GoogleScholar Baddeley,A.,Logie,R.,Nimmosmith,I.,andBrereton,N.(1985).Componentsoffluentreading.J.Mem.Lang.24,119–131.doi:10.1016/0749-596X(85)90019-1 CrossRefFullText|GoogleScholar Baddeley,A.D.(1986).WorkingMemory.Oxford:OxfordUniversityPress. GoogleScholar Baddeley,A.D.,andHitch,G.J.L.(1974).“Workingmemory,”inThePsychologyofLearningandMotivation:AdvancesinResearchandTheory,Vol.8,ed.G.A.Bower(NewYork:AcademicPress),47–89. GoogleScholar Baltes,P.B.,andLindenberger,U.(1997).Emergenceofpowerfulconnectionbetweensensoryandcognitivefunctionsacrosstheadults’lifespan:anewwindowtothestudyofcognitiveaging?Psychol.Aging12,12–21.doi:10.1037/0882-7974.12.1.12 PubMedAbstract|CrossRefFullText|GoogleScholar Boldt,J.B.,Kjems,U.,Pedersen,M.S.,Lunner,T.,andWang,D.L.(2008).“Estimationoftheidealbinarymaskusingdirectionalsystems,”inProceedingsofthe11thInternationalWorkshoponAcousticEchoandNoiseControl,Seattle,WA. GoogleScholar Brand,T.(2000).AnalysisandOptimizationofPsychophysicalProceduresinAudiology.Ph.D.dissertation,Bibliotheks-undInformationssystemderUniversitätOldenburg,Oldenburg. GoogleScholar Breakwell,G.M.,Hammond,S.,andFife-Shaw,C.(eds).(2006).ResearchMethodsinPsychology,3rdEdn.London:Sage. GoogleScholar Buus,S.,andFlorentine,M.(2001).Growthofloudnessinlistenerswithcochlearhearinglosses:Recruitmentreconsidered.J.Assoc.Res.Otolaryngol.3,120–139.doi:10.1007/s101620010084 PubMedAbstract|CrossRefFullText|GoogleScholar CommitteeonHearing,Bioacoustics,andBiomechanics[CHABA](1988).Speechunderstandingandaging.J.Acoust.Soc.Am.83,859–895. GoogleScholar Daneman,M.,andCarpenter,P.A.(1980).Individualdifferencesinworkingmemoryandreading.J.VerbalLearn.VerbalBehav.19,450–466.doi:10.1016/S0022-5371(80)90312-6 CrossRefFullText|GoogleScholar Desjardins,J.L.,andDoherty,K.A.(2014).Theeffectofhearingaidnoisereductiononlisteningeffortinhearing-impairedadults.EarHear.35,600–610.doi:10.1097/AUD.0000000000000028 PubMedAbstract|CrossRefFullText|GoogleScholar Dillon,H.(1996).Compression?Yes,butforloworhighfrequencies,forloworhighintensities,andwithwhatresponsetimes?EarHear.17,287–307. GoogleScholar Dillon,H.(2001).HearingAIDS.Stuttgart:Thieme. GoogleScholar Dillon,H.(2012).HearingAIDS,2ndEdn.Turramurra,NSW:BoomerangPress,48–54. GoogleScholar Foo,C.,Rudner,M.,Rönnberg,J.,andLunner,T.(2007).Recognitionofspeechinnoisewithnewhearinginstrumentcompressionreleasesettingsrequiresexplicitcognitivestorageandprocessingcapacity.J.Am.Acad.Audiol.18,618–631.doi:10.3766/jaaa.18.7.8 PubMedAbstract|CrossRefFullText|GoogleScholar Gatehouse,S.,Naylor,G.,andElberling,C.(2003).Benefitsfromhearingaidsinrelationtotheinteractionbetweentheusersandtheenvironment.Int.J.Audiol.42(Suppl.1),S77–S85.doi:10.3109/14992020309074627 CrossRefFullText Gatehouse,S.,Naylor,G.,andElberling,C.(2006).Linearandnonlinearhearingaidfittings–1.Patternsofbenefit.Int.J.Audiol.45,130–152.doi:10.1080/14992020500429518 CrossRefFullText|GoogleScholar Gordon-Salant,S.,andCole,S.S.(2016).Effectsofageandworkingmemorycapacityonspeechrecognitionperformanceinnoiseamonglistenerswithnormalhearing.EarHear.37,593–602.doi:10.1097/AUD.0000000000000316 PubMedAbstract|CrossRefFullText|GoogleScholar Gordon-Salant,S.,andFitzgibbons,P.J.(2001).Sourcesofage-relatedrecognitiondifficultyfortimecompressedspeech.J.SpeechLang.Hear.Res.44,709.doi:10.1044/1092-4388(2001/056) PubMedAbstract|CrossRefFullText|GoogleScholar Hagerman,B.,andKinnefors,V.(1995).Efficientadaptivemethodsformeasurementsofspeechperceptionthresholdsinquietandnoise.Scand.Audiol.24,71–77.doi:10.3109/01050399509042213 PubMedAbstract|CrossRefFullText|GoogleScholar Hällgren,M.,Larsby,B.,andArlinger,S.(2006).ASwedishversionofhearinginnoisetest(HINT)formeasurementofspeechrecognition.Int.J.Audiol.45,227–237.doi:10.1080/14992020500429583 PubMedAbstract|CrossRefFullText|GoogleScholar Kates,J.M.(2008).DigitalHearingAIDS,2ndEdn.SanDiego,CA:PluralPublishingInc. GoogleScholar Larsby,B.,Hällgren,M.,andLyxell,B.(2008).Theinterferenceofdifferentbackgroundnoisesonspeechprocessinginelderlyhearingimpairedsubjects.Int.J.Audiol.47,S83–S90.doi:10.1080/14992020802301159 PubMedAbstract|CrossRefFullText|GoogleScholar Larsby,B.,Hällgren,M.,Lyxell,B.,andArlinger,S.(2005).Cognitiveperformanceandperceivedeffortinspeechprocessingtasks:effectsofdifferentnoisebackgroundsinnormal-hearingandhearing-impairedsubjects.Int.J.Audiol.44,131–143.doi:10.1080/14992020500057244 PubMedAbstract|CrossRefFullText|GoogleScholar Li,Y.,andWang,D.(2009).Ontheoptimalityofidealbinarytime-frequencymasks.SpeechCommun.51,230–239.doi:10.1016/j.specom.2008.09.001 CrossRefFullText|GoogleScholar Lunner,T.(2003).Cognitivefunctioninrelationtohearingaiduse.Int.J.Audiol.42(Suppl.1),S49–S58.doi:10.3109/14992020309074624 CrossRefFullText|GoogleScholar Lunner,T.,Rudner,M.,andRönnberg,J.(2009).Cognitionandhearingaids.Scand.J.Psychol.50,395–403.doi:10.1111/j.1467-9450.2009.00742.x PubMedAbstract|CrossRefFullText|GoogleScholar Lunner,T.,andSundewall-Thorén,E.(2007).Interactionsbetweencognition,compression,andlisteningconditions:effectsonspeech-in-noiseperformanceinatwo-channelhearingaid.J.Am.Acad.Audiol.18,604–617.doi:10.3766/jaaa.18.7.7 PubMedAbstract|CrossRefFullText|GoogleScholar Neher,T.(2014).Relatinghearinglossandexecutivefunctionstohearingaidusers’preferencefor,andspeechrecognitionwith,differentcombinationsofbinauralnoisereductionandmicrophonedirectionality.Front.Neurosci.8:391.doi:10.3389/fnins.2014.00391 PubMedAbstract|CrossRefFullText|GoogleScholar Ng,E.H.N.,Rudner,M.,Lunner,T.,Pedersen,M.S.,andRönnberg,J.(2013).Effectsofnoiseandworkingmemorycapacityonmemoryprocessingofspeechforhearing-aidusers.Int.J.Audiol.52,433–441.doi:10.3109/14992027.2013.776181 PubMedAbstract|CrossRefFullText|GoogleScholar Ng,E.H.N.,Rudner,M.,Lunner,T.,andRönnberg,J.(2015).Noisereductionimprovesmemoryfortargetlanguagespeechincompetingnativebutnotforeignlanguagespeech.EarHear.36,82–91.doi:10.1097/AUD.0000000000000080 PubMedAbstract|CrossRefFullText|GoogleScholar Ohlenforst,B.,MacDonald,E.,andSouza,P.(2015).Exploringtherelationshipbetweenworkingmemory,compressorspeedandbackgroundnoisecharacteristics.EarHear.37,137–143.doi:10.1097/AUD.0000000000000240 PubMedAbstract|CrossRefFullText|GoogleScholar Pichora-Fuller,M.K.(2003).Processingspeedandtiminginagingadults:psychoacoustics,speechperception,andcomprehension.Int.J.Audiol.42(Suppl.1),S59–S67.doi:10.3109/14992020309074625 PubMedAbstract|CrossRefFullText|GoogleScholar Plomp,R.,andMimpen,A.M.(1979).Improvingthereliabilityoftestingthespeechrecognitionthresholdforsentences.Audiology18,43–52.doi:10.3109/00206097909072618 CrossRefFullText|GoogleScholar Rönnberg,J.(1990).Cognitiveandcommunicativefunction:theeffectsofchronologicalageandhandicapage.Eur.J.Cogn.Psychol.2,253–273.doi:10.1080/09541449008406207 CrossRefFullText|GoogleScholar Rönnberg,J.,Arlinger,S.,Lyxell,B.,andKinnefors,C.(1989).Visualevokedpotentials:relationtoadultspeechreadingandcognitivefunction.J.SpeechHear.Res.32,725–735.doi:10.1044/jshr.3204.725 PubMedAbstract|CrossRefFullText|GoogleScholar Rönnberg,J.,Lunner,T.,Ng,E.H.,Lidestam,B.,Zekveld,A.A.,Sörqvist,P.,etal.(2016).Hearingimpairment,cognitionandspeechunderstanding:exploratoryfactoranalysesofacomprehensivetestbatteryforagroupofhearingaidusers,then200study.Int.J.Audiol.55,623–642.doi:10.1080/14992027.2016.1219775 PubMedAbstract|CrossRefFullText|GoogleScholar Rönnberg,J.,Lunner,T.,Zekveld,A.A.,Sörqvist,P.,Danielsson,H.,Lyxell,B.,etal.(2013).Theeaseoflanguageunderstanding(ELU)model:theoretical,empirical,andclinicaladvances.Front.Syst.Neurosci.7:31.doi:10.3389/fnsys.2013.00031 PubMedAbstract|CrossRefFullText|GoogleScholar Rönnberg,J.,Rudner,M.,Foo,C.,andLunner,T.(2008).Cognitioncounts:aworkingmemorysystemforeaseoflanguageunderstanding(ELU).Int.J.Audiol.47(Suppl.2),S99–S105.doi:10.1080/14992020802301167 PubMedAbstract|CrossRefFullText|GoogleScholar Rudner,M.,Foo,C.,Rönnberg,J.,andLunner,T.(2009).Cognitionandaidedspeechrecognitioninnoise:specificroleforcognitivefactorsfollowingnine-weekexperiencewithadjustedcompressionsettingsinhearingaids.Scand.J.Psychol.50,405–418.doi:10.1111/j.1467-9450.2009.00745.x PubMedAbstract|CrossRefFullText|GoogleScholar Rudner,M.,Rönnberg,J.,andLunner,T.(2011).Workingmemorysupportslisteninginnoiseforpersonswithhearingimpairment.J.Am.Acad.Audiol.22,156–167.doi:10.3766/jaaa.22.3.4 PubMedAbstract|CrossRefFullText|GoogleScholar Salthouse,T.A.(1996).Theprocessingspeedtheoryofadults’agedifferencesincognition.Psychol.Rev.103,403–428.doi:10.1037/0033-295X.103.3.403 CrossRefFullText|GoogleScholar Salthouse,T.A.(2000).Agingandmeasuresofprocessingspeed.Biol.Psychol.54,35–54.doi:10.1016/S0301-0511(00)00052-1 CrossRefFullText|GoogleScholar Schneider,B.A.,Daneman,M.,andMurphy,D.R.(2005).Speechcomprehensiondifficultiesinolderadults:cognitiveslowingorage-relatedchangesinhearing?Psychol.Aging20,261–271.doi:10.1037/0882-7974.20.2.261 PubMedAbstract|CrossRefFullText|GoogleScholar Schwartz,K.C.,Chatterjee,M.,andGordon-Salant,S.(2008).Recognitionofspectrally-degradedphonemesbyyoungerandoldernormal-hearinglisteners.J.Acoust.Soc.Am.124,3972–3988.doi:10.1121/1.2997434 PubMedAbstract|CrossRefFullText|GoogleScholar Souza,P.,andArehart,K.H.(2015).Robustrelationshipbetweenreadingspanandspeechrecognitioninnoise.Int.J.Audiol.54,705–713.doi:10.3109/14992027.2015.1043062 PubMedAbstract|CrossRefFullText|GoogleScholar Souza,P.E.,Arehart,K.H.,Souza,P.,Arehart,K.H.,Shen,J.,Anderson,M.,etal.(2015a).Workingmemoryandintelligibilityofhearing-aidprocessedspeech.Front.Psychol.6:526.doi:10.3389/fpsyg.2015.00526 PubMedAbstract|CrossRefFullText|GoogleScholar Souza,P.E.,Arehart,K.,andNeher,T.(2015b).Workingmemoryandhearingaidprocessing:literaturefindings,futuredirections,andclinicalapplications.Front.Psychol.6:1894.doi:10.3389/fpsyg.2015.01894 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,D.,Kjems,U.,Pedersen,M.S.,Boldt,J.B.,andLunner,T.(2009).Speechintelligibilityinbackgroundnoisewithidealbinarytime-frequencymasking.J.Acoust.Soc.Am.125,2336–2347.doi:10.1121/1.3083233 PubMedAbstract|CrossRefFullText|GoogleScholar Wiig,E.H.,Nielsen,N.P.,Minthon,L.,andWarkentin,S.(2002).AQT:AQuickTestofCognitiveSpeed.SanAntonio,TX:Pearson/PsychCorp. GoogleScholar Wingfield,A.,Poon,L.W.,Lombardi,L.,andLowe,D.(1985).Speedofprocessinginnormalaging:effectsofspeechrate,linguisticstructure,andprocessingtime.J.Gerontol.40,579–585.doi:10.1093/geronj/40.5.579 PubMedAbstract|CrossRefFullText|GoogleScholar Wingfield,A.,andTun,P.A.(2001).Spokenlanguagecomprehensioninolderadults:interactionbetweensensoryandcognitivechangeinnormalaging.Sem.Hear.22,287–301.doi:10.1055/s-2001-15632 CrossRefFullText|GoogleScholar Keywords:aging,cognition,speechrecognitioninnoise,hearingaid,signalprocessingalgorithms,hearingimpairment Citation:YumbaWK(2017)CognitiveProcessingSpeed,WorkingMemory,andtheIntelligibilityofHearingAid-ProcessedSpeechinPersonswithHearingImpairment.Front.Psychol.8:1308.doi:10.3389/fpsyg.2017.01308 Received:14December2016;Accepted:17July2017;Published:15August2017. Editedby: ClaudiaRepetto,UniversitàCattolicadelSacroCuore,Italy Reviewedby: PietroSpataro,SapienzaUniversitàdiRoma,Italy ChristianDesloovere,UniversitaireZiekenhuizenLeuven,Belgium Copyright©2017Yumba.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:WycliffeKabayweYumba,[email protected];[email protected] Peoplealsolookedat Download
延伸文章資訊
- 1What Is Slow Processing Speed? - Understood.org
Processing speed is how long it takes someone to get something done. Some people take longer to p...
- 2Understanding and Addressing Processing Speed Deficits in ...
Processing speed refers to the pace at which you are able to perceive information (visual or audi...
- 3Processing Speed - Cognitive Skill - CogniFit
Processing speed implies a greater ability to easily do simple or previously-learned tasks. This ...
- 4Processing Speed - an overview | ScienceDirect Topics
- 5Processing Speed Introduction: What it is & What to Do
Processing speed involves one or more of the following functions: the amount of time it takes to ...