NET3 - EuCNC
文章推薦指數: 80 %
Wednesday, 17 June 2020, 12:15-16:00 CEST, Non-Live interaction (Chat), ... Our architecture aims at crossdomain security & trust ... NET3HomeNET3NET3–Software-basedandSelf-drivingNetworksWednesday,17June2020,12:15-14:30CEST,Recommendedre-viewing,https://www.youtube.com/playlist?list=PLjQu6nB1DfNBOrnpJ9fJmXRM0acK6q0QTWednesday,17June2020,12:15-16:00CEST,Non-Liveinteraction(Chat), linksentonlytoRegistered people LearningSDNTrafficFlowAccurateModelstoEnableQueueBandwidthDynamicOptimizationEnricoReticcioli,GiovanniDomenicoDiGirolamo,FrancescoSmarra,AlessioCarmeniniandAlessandroD’Innocenzo(UniversityofL’Aquila,Italy);FabioGraziosi(Universityofl’Aquila,Italy)SoftwareDefinedNetwork(SDN)architecturesdecouplecontrolandforwardingfunctionalitiesbyenablingthenetworkdevicestoberemotelyconfigurable/programmableruntimebyacontroller.Asadirectconsequenceidentifyinganaccuratemodelofanetworkandforwardingdevicesiscrucialinordertoapplyadvancedcontroltechniquestooptimizethenetworkperformance.AnenablingfactorinthisdirectionisgivenbyrecentresultsthatappropriatelycombineSystemIdentificationandMachineLearningtechniquestoobtainpredictivemodelsusinghistoricaldataretrievedfromanetwork.Inthispaperweproposeanovelmethodologytolearn,startingfromhistoricaldataandappropriatelycombiningARXidentificationwithRegressionTreesandRandomForests,anaccuratemodelofthedynamicalinput-outputbehaviorofanetworkdevicethatcanbedirectlyandefficientlyusedtooptimallyanddynamicallycontrolthebandwidthofthequeuesofswitchports,withintheSDNparadigm.WecompareourpredictivemodelwithNeuralNetworkpredictorsanddemonstratethebenefitsintermsofPacketLossesreductionandBandwidthsavingsintheMininetnetworkemulatorenvironment. AReal-timeQoS-Demand-AwareComputationalResourceSharingApproachinC-RANMojganBarahmanandLuisM.Correia(INESC-ID/INOV/IST,UniversityofLisbon);LúcioStuderFerreira(ISTEC/ULHTCOPELABS/INESC-ID,Lisbon)Thispaperpresentsadynamicresourcesharingapproachaimingatoptimizingcomputationalresourceperformanceofabasebandunit(BBU)poolinacloudradioaccessnetwork.Basedonthebargainingconceptingametheory,resourcesharingisformulatedasanoptimizationproblemconsideringqualityofservice,real-timedemandandtheminimumresourcesthatarerequiredtopreventBBUcrashes.TheperformanceoftheproposedmodelisevaluatedintermsofBBUfulfilmentlevel,resourceusageandefficiencyovertime.Simulationresults,forheterogeneousservicesinatidaltrafficenvironment,demonstratethattheproposedmodelallocatescomputationalresourcesinproportiontotheinstantaneousdemandofBBUsandthepriorityoftheongoingservices.Resultsalsoshowaminimum97%enhancementintheefficiencyofresourceallocationinoff-peakhours,comparedtofixedallocationstrategiesbasedonpeak-hourtrafficdemand. PredictingBandwidthUtilizationonNetworkLinksUsingMachineLearningMaximeLabonne(CEALIST&InstitutPolytechniquedeParis,France);CharalamposChatzinakis(CommunicatingSystemsLaboratoryCEA,France);AlexisOlivereau(CEA,LIST,France)Predictingthebandwidthutilizationonnetworklinkscanbeextremelyusefulfordetectingcongestioninordertocorrectthembeforetheyoccur.Inthispaper,wepresentasolutiontopredictthebandwidthutilizationbetweendifferentnetworklinkswithaveryhighaccuracy.Asimulatednetworkiscreatedtocollectdatarelatedtotheperformanceofthenetworklinksoneveryinterface.Thesedataareprocessedandexpandedwithfeatureengineeringinordertocreateatrainingset.Weevaluateandcomparethreetypesofmachinelearningalgorithms,namelyARIMA(AutoRegressiveIntegratedMovingAverage),MLP(MultiLayerPerceptron)andLSTM(LongShort-TermMemory),inordertopredictthefuturebandwidthconsumption.TheLSTMoutperformsARIMAandMLPwithveryaccuratepredictions,rarelyexceedinga3\%error(40\%forARIMAand20\%fortheMLP).WethenshowthattheproposedsolutioncanbeusedinrealtimewithareactionmanagedbyaSoftware-DefinedNetworking(SDN)platform. FairShareofLatencyinInter-Data-CenterBackboneNetworksNitinVaryaniandZhi-LiZhang(UniversityofMinnesota,USA)Theinter-data-centerbackbonenetworksinitiallycarriedbandwidth-intensivetrafficwhichdoesnothavestringentlatencyservice-level-objectives(SLOs).Fairallocationpolicieswereusedinsuchnetworkstoachieveequitabledistributionofbandwidthtotheflows.However,thesenetworkshavestartedcarryingtrafficthatissignificantlytiedtotheend-userexperienceandthushavestringentlatencySLOs.But,theliteraturelacksroutingalgorithmsforinter-data-centerbackbonenetworkswhichimposelatencySLOsonitstrafficinadditiontoachievingfairallocationofbandwidth.We,therefore,introduceaconceptcalled“fairshareoflatency”thatinvolvesroutingtrafficfordifferentflowssuchthattheviolationoflatencySLOsisminimum.Weproposealinear-programmingbasedroutingalgorithmforinter-data-centerbackbonenetworksthatincorporatesboth“fairshareoflatency”andfairallocationofbandwidth.Wealsointroducelatencyutilitycurvesthatdepicttheperceivedworthofdifferentlatenciestoanapplication.Simulationresultsonthetopologiesofinter-data-centernetworksofGoogle,Microsoft,Amazon,andIBMrevealthatourroutingalgorithmachievessignificantimprovementinmeetingthelatencySLOsofdifferenttrafficclasseswithaslightreductioninthefairnessofbandwidthallocation.AI-drivenZero-touchOperations,SecurityandTrustinMulti-operator5GNetworks:aConceptualArchitectureGinoCarrozzo(Nextworks,Italy);MuhammadShuaibSiddiqui(Fundaciói2CAT,InternetiInnovacióDigitalaCatalunya,Spain);AugustBetzler(i2CATFoundation,Spain);JoseBonnet(AlticeLabs,Portugal);GregorioMartinezPerez(UniversityofMurcia,Spain);AuroraRamos(Atos,Spain);TejasSubramanya(UniversityofTrento&FBKCREATE-NET,Italy)The5Gnetworksolutionscurrentlystandardisedanddeployeddonotyetenablethefullpotentialofpervasivenetworkingandcomputingenvisionedin5Ginitialvisions:networkservicesandsliceswithdifferentQoSprofilesdonotspanmultipleoperators;security,trustandautomationislimited.Theevolutionof5Gtowardsatrulyproduction-levelstageneedstoheavilyrelyonautomatedend-to-endnetworkoperations,useofdistributedArtificialIntelligence(AI)forcognitivenetworkorchestrationandmanagementandminimalmanualinterventions(zero-touchautomation).Alltheseelementsarekeytoimplementhighlypervasivenetworkinfrastructures.Moreover,DistributedLedgerTechnologies(DLT)canbeadoptedtoimplementdistributedsecurityandtrustthroughSmartContractsamongmultiplenon-trustedparties.Inthispaper,weproposeaninitialconceptofazero-touchsecurityandtrustarchitectureforubiquitouscomputingandconnectivityin5Gnetworks.Ourarchitectureaimsatcrossdomainsecurity&trustorchestrationmechanismsbycouplingDLTswithAI-drivenoperationsandservicelifecycleautomationinmulti-tenantandmulti-stakeholderenvironments.Threerepresentativeusecasesareidentifiedthroughwhichwewillvalidatetheworkwhichwillbevalidatedinthetestfacilitiesat5GBarcelonaand5TONIC/Madrid.
延伸文章資訊
- 117LIVE - Live Streaming 直播互動娛樂平台
17LIVE 直播互動零距離。各式特色才藝直播主分享生活每一刻;多元節目內容免費線上看!
- 2live smooth streaming deosn't work - MSDN
Tuesday, August 17, 2010 10:50 PM ... I followed this article http://learn.iis.net/page.aspx/620/...
- 3srs-archived/full.conf at master - GitHub
SRS's a simplest, conceptual integrated, industrial-strength live streaming origin ... the http a...
- 4NET3 - EuCNC
Wednesday, 17 June 2020, 12:15-16:00 CEST, Non-Live interaction (Chat), ... Our architecture aims...
- 517LIVE - 维基百科,自由的百科全书
17LIVE(17讀音為「一七」)是源自臺灣的即時影音串流平台,於2015年創辦,其特色是即時的影音串流技術為主核心建構的社交共享平台。17LIVE集團旗下擁有數款以直播為 ...