Full article: Future steps in visual working memory research

文章推薦指數: 80 %
投票人數:10人

Visual working memory (vWM) is the cognitive function that enables the temporary maintenance of visual information relevant for a current or ... SkiptoMainContent Searchin: ThisJournal Anywhere Advancedsearch VisualCognition Volume28,2020-Issue5-8:SpecialIssue:Currentperspectivesonvisualworkingmemory Submitanarticle Journalhomepage Freeaccess 1,803 Views 1 CrossRefcitationstodate 0 Altmetric Listen Editorial FuturestepsinvisualworkingmemoryresearchChristianN.L.OliversaFacultyofBehaviouralandMovementSciences,InstituteofBrainandBehaviorAmsterdam,ExperimentalandAppliedPsychology,VrijeUniversiteit,Amsterdam,NetherlandsCorrespondencec.n.l.olivers@vu.nlViewfurtherauthorinformation&StefanVanderStigchelbExperimentalPsychology,HelmholtzInstitute,UtrechtUniversity,Utrecht,NetherlandsViewfurtherauthorinformation Pages325-329 Publishedonline:30Oct2020 Downloadcitation https://doi.org/10.1080/13506285.2020.1833478 CrossMark InthisarticleInthisarticleFromthepasttothefutureMemory-for-actionDifferentfunctionalstatesAdditionalinformationReferences Editorial Futurestepsinvisualworkingmemoryresearch FullArticle Figures&data References Citations Metrics Reprints&Permissions PDF EPUB Visualworkingmemory(vWM)isthecognitivefunctionthatenablesthetemporarymaintenanceofvisualinformationrelevantforacurrentorpendingtask.Forexample,whenweassembleapieceofflat-packfurnitureweoftenfirstlookatthemanualtotakeinanimageofthepartweneed,afterwhichwelookforthesamepartinthe(hopefullycomplete)package.Bydefinition,vWMishighlyflexible,asitcanrepresentspatial,feature,andobjectinformation–representationsthatcanbeupdated,replaced,recombinedorforgottenaccordingtotaskdemands.Forexample,afterhavingassembledonepartoffurniture,youforgetaboutitandmoveontothenextstep.Thus,vWMisacorecomponentofwhatmakeshumancognitionsoadaptiveandflexibleincomplexenvironments.Moreover,vWMresearch(andrelatedresearchintovisualimagery)providesawindowonwhatwecognitionscientistsarguablyfindthemostexciting:Aspurely“mental”representations,somehowactivatedandmanipulated“online,”visualmemorandaprovidetheepitomeofarichanddynamicinternal,cognitiveworld.Asamemoryofthepresent,onecouldarguethatthecontentofvWMreflectswhatiscurrentlyinthemind'seye,eithersampledfromtheexternalenvironment,maintainedforlateruse,imagined,orretrievedfromlong-termmemory.Finally,inanincreasinglymorevisuallydrivenworld,itisimportanttofullyunderstandourvisualcapacities,inordertooptimallydesignthevisualenvironment.Perhapsnotsurprisinglythen,thepasttwodecadeshavewitnessedanextensivegrowthofvWMstudies,asisshowninFigure1,withcurrentlyover200publicationsayearwithvisualworkingmemoryorvisualshort-termmemorymentionedintitleorabstract(source:Pubmed.gov,September1,2020).Thesepublicationscontainlivelydebatesaboutthefunction,content,control,andcapacityofvisualworkingmemory,aswellasitsunderlyingneuralarchitecture.ResearchonvWMhasclearlycrossedthebordersbetweendifferentdisciplines,attractingresearchersfromawidevarietyofbackgrounds,includingperception,attention,consciousness,actionandmemory.Thoughperhapstooearlytotell,thesamegraphalsosuggeststhatthegrowthhasbeenslowingoverthemostrecentyears,whichisasignofamaturingfield,butprobablyalsoafieldthatisatacrossroads,lookingfornewdirections.Itisthismixofexcitementandthesenseofafieldatacrossroadsthatinspiredustocompilethisspecialissue,whichcontainsaselectionofwhatmaybebestdescribedasopinionatedreviewsandexperimentalexplorationsonwherethefieldisandwhereitisoroughttobegoing.ThisselectiongrewoutofaworkshoponthesametopicheldattheRoyalDutchAcademyofSciences(KNAW)inAmsterdam,June27–28,2020,inwhichasuperbrangeofexpertsonvWMcametogether.FuturestepsinvisualworkingmemoryresearchAllauthorsChristianN.L.Olivers&StefanVanderStigchelhttps://doi.org/10.1080/13506285.2020.1833478Publishedonline:30October2020Figure1.NumberofpublicationsperyearasindexedinPubmedwitheither“visualworkingmemory”or“visualshort-termmemory”inthetitleorabstract.Source:Pubmed.gov(September1,2020).DisplayfullsizeFigure1.NumberofpublicationsperyearasindexedinPubmedwitheither“visualworkingmemory”or“visualshort-termmemory”inthetitleorabstract.Source:Pubmed.gov(September1,2020).Andthecontributionsdorevealanumberofcleartrends,aswellasanumberofcentralcurrentissuesthatstillawaitresolution.Herewepointtheseoutand,whereopportune,brieflyaddourowntakeonit.FromthepasttothefutureTheclearestshiftinperspectivethatiscurrentlyemergingisfromseeingvWMasamemoryoftowardsregardingitasamemoryfor.Thefirstdecadeofthiscenturysawanexplosionofstudiesinterestedinthenumberandfidelityofitemsthatcouldberetained,usingpredominantlydelayedmatch-to-sampleorcontinuousrecalltasks(seee.g.Luck&Vogel,2013,forareview).WhilethisendeavourhasgeneratedawealthofknowledgeonwhatvWMismadeof,itleftthequestionwhatitismadefor.TheseconddecadehasthereforeseenagradualbutundeniableshifttowardsafocusonthefunctionaluseofvWMbeyondmerelyrememberingthepast(e.g.Myersetal.,2017;Nobre&Stokes,2019;Oliversetal.,2011).Thecurrentspecialissuereflectsthisinanumberofways.Stillonthesensorysideofthings,onepurposethatvWMisthoughttoserveistoactivelybiasattention.OrtandOlivers(2020)focusonthecapacityofvWMwhenvWMcontentisusedtosearchformultiplepotentialtargetsinvisualsearchdisplays,reviewingtheevidencethatmemoryforsearchmayhaveadifferentcapacitythanmemoryofpastvisualinformation.Bocincovaetal.(2020)toofocusonvWMforthepurposeofvisualsearch,butfromamodellingperspective,showingthatan“offtheshelf”modelofvWM(Manoharetal.,2019)readilygeneratesbiasesthatmimicattentionalguidanceeffectsinvisualsearch.ButvWMmayalsoplayacentralroleinbiasingattentionawayfromdistractinginformationduringencoding,asisarguedbyLiesefeldetal.(2020).ThesestudiesprovideexamplesofhowdifferentresearchfieldscometogetherinthestudyofvWMfunction.Memory-for-actionInwhatisprobablythestrongestcurrentdevelopmentinvWMresearch,anumberofreviewsfurtherextendtheperspectiveofwhatvWMisfor,byfocusingontherelationshiptoaction(vanEde,2020;Heueretal.,2020;VanderStigchel,2020;seealsoOlivers&Roelfsema,2020;VanderStigchel&Hollingworth,2018).Specifically,Heueretal.reviewevidencethatactionautomaticallydrivesselectionofassociatedinformationwithinvWM.Forexample,programminganeyemovementtowardsacertainlocationimprovesmemoryofanobjectassociatedwiththatlocation,whileprogrammingdifferenthandmovements(graspingversuspointing)differentiallyaffectsmemoryfordifferentfeatures,notablyorientationandcolour.Astheauthorspointout,animportantquestionforfutureresearchistowhatextentsuchaction-basedselectiondiffersfromotherdriversofselection(i.e.whetheractionisspecial),suchasstandardretrospectivecueswhichareofasensorynature(Gazzaley&Nobre,2012;Souza&Oberauer,2016).Arguably,action-basedmemorybenefitsmayreflectatwo-stepmechanism,wherefirsttheactiongoaltellsthesystemwhichobjectorlocationisrelevant,afterwhichasensory-basedattentionmechanismenhancesthatinformation.Conversely,onecouldarguethatevenstandardretro-cueinginvolvesactionselection(Olivers&Roelfsema,2020).WeagreewithHeueretal.thattodisentanglethese,andanumberofotherimportantissuesrequirecleverexperimentingandprobablysophisticatedneurophysiologicalmethods.AdditionalfunctionallinksbetweenvWMandactionarediscussedbyvanEde(2020),whodescribesevidencehowactionplaysaroleintherecruitmentofvisualmemories,howitchangesthequalityofthosememories,andhowthosememoriesservetoovercomeaction-inducedchangesinsensoryinput.Moreover,morepreciseactionmeasuressuchasmicrosaccadeshaverecentlyproventoprovideausefultoolforreadingoutthequalityandstatusofmnemonicrepresentations(deVriesetal.,2018;vanEdeetal.,2019;vanLoonetal.,2017).Inourview,thebiggestcurrentchallengethatemergesfromthisishowthesebidirectionallinksbetweensensoryandmotorrepresentationsareimplementedmechanistically(Kruijneetal.,2020).VanderStigchel(2020)pointsoutyetanotherperspectiveontheroleofactioninvWM.Action,bydefinition,enablesthecognitivesystemtointeractwithitsenvironment,andthusofferstheuniqueopportunitytousethatenvironmentformemorypurposes.Unlikeinthetypicallaboratoryexperiment,visualobjectsintherealworldtendstostayquiteconstantandstable,whileweourselvestendtomovearound.Ratherthanpreciselyandcontinuouslytryingtoholdontothevisualfeaturesofanobject,thesystemcouldstorethegoalofmovingbacktothelocationoftheobjecttosimplysampleitagain.Inotherwords,actionsallowustousetheworldasanoutsidememory.ThiswouldalsoprovidevWMwithanelegantwayarounditscapacitylimitations.Whilethisideahasbeenaroundforagoodwhile(cf.O’Regan,1992),stillverylittleisknownabouthowthebraindecidesbetweenwhentotaketheefforttorecruitworkingmemoryandwhentoleaveinformationintheexternalworld.DifferentfunctionalstatesLastbutnotleast,differentfunctionalpurposeseitherimplydifferentrepresentationalstates,ordifferentoperationsappliedtothesamerepresentationalstate(causingdifferentrepresentationalstatesfurtherdownstream).AsStokesetal.(2020)review,thelastdecadehasseenagooddealofevidenceforafunctionally‘active’state,adoptedbymemoryitemsusedforacurrentorimminenttask,andafunctionally‘latent’state,adoptedbyitemsrememberedforafuture,prospectivetask.Eitherimplicitlyorexplicitly,researchershaveassociatedthesestateswithrespectivelyactiveandsustainedfiringversusactivity-silentplasticity-basedmechanisms.ButasStokesetal.,rightlypointout,thisone-to-onerelationshipisnotnecessarilythecase.Therearemultiplewaysofrecodingortransformingmemoriesineitherfiringorplasticitypatterns.Thereisthustheriskofconfusingquestionsaboutthefunctionalroleinbehaviourwithquestionsabouttheunderlyingbiologicalcorrelateofthoserepresentations.Weaddtothisanotherimportantunresolvedissue,namelyhowmemoriesarebeingtransformed,onthefly,accordingtotaskdemands.Whichmechanismscanturnfunctionallyactiveintofunctionallylatentmemories,orturnneurophysiologicallyactiveintoneurophysiologicalsilentmemories,andviceversa,atthescaleofsecondsorless?Onewayofchangingtherepresentationalstateofamemoryisbyadoptingadifferentbrainregion.ThisisadvocatedbyXu(2020,seealsoChristopheletal.,2018).XuarguesagainstsensoryrecruitmentasthenecessarymechanismofvWMmaintenance.Accordingtothesensoryrecruitmentaccount,vWMmakesatleasttosomeextentuseofthesamerepresentations,andthereforethesamebrainareasasvisualperception.CentralevidenceforthishypothesiscomesfromstudiesshowingthatvWMcontentcanbereconstructedfromvisualcorticalareasduringthedelayperiod(e.g.Harrison&Tong,2009).However,Xuarguesthatwhilevisualcortexmaybeuseful,itcannotbenecessaryforsuccessfulvWMmaintenance,sinceobjectscanalsobesuccessfullyrememberedwithoutvisualcorticalinvolvement.Themainevidenceforthiscomesfromexperimentsinwhichirrelevant,distractingstimuliwereshownduringthememorydelayperiod(Bettencourt&Xu,2016).ThisseverelydisrupteddecodingofvWMcontentfromoccipitalcortex,butnotsomuchperformance.Moreover,vWMcontentcouldbesuccessfullydecodedfromposteriorparietalcortexduringdistraction.Xuthusarguesthatposteriorparietalcortexmaybethemorecrucialsiteforstablystoringvisualmemoriesfortheshortterm.AlthoughmorerecentevidencehasemergedthatvWMcontentcanbesuccessfullydecodedfromoccipitalareasevenunderdistractingstimulation(Rademakeretal.,2019),Xuarguesthatthisdoesnotnecessarilydemonstratethatsuchoccipitalareasfunctionallycontributetothememory.InterestinglyPostleandYu(2020)argueforwhatappearstobequitetheopposite.TheywarnthatbeingabletodecodethecontentofvWMfromposteriorparietalcortex(orfrontalcortexforthatmatter)doesnotnecessarilymeanthatthoseareasactuallyrepresentvWMcontent.Rather,theyargue,theseareascouldwellbeinvolvedincontroloperations(commensuratethefrontoparietalcontrolnetwork'sclassicrole),butthatthespecificparametersoftheseoperationsdependonthestimulus.PostleandYuthenmoreorlessexplicitlyassumethatsensorycortex(theymentionoccipitalandtemporalcortex)containstherealvWMcontent.Althoughthisassumptionmakessense,onecouldarguethatPostleandYufallintheirowntrap:Ifsuccessfuldecodingofcontentfromfrontoparietalnetworksreflectscontrolmechanisms,thesamemightthenholdforsensoryareas.Forexample,suchdecodingmayreflectwhereonastimulusobserversattend,covertly,orevenovertly(cf.Mostertetal.,2018).Inanycase,itisclearthenthatwhereandhowvWMrepresentationsaremaintainedbythebrainisfarfromresolvedandstilldeservesagooddealoffurtherresearch.Akeyissueherewillbetogetabettergrasponwhatisactuallydecodedfromneuralsignalsusingmultivariateanalyses.WeconcludethatthefieldofvWMresearchisstillasdynamicasthephenomenonitisinvestigating.Perhapsthetake-homemessageisthatourtheoriesshouldreflectthatdynamicnature,asithasbecomeclearthatone-dimensionaltheoriesonthearchitectureofvWMwillnotsuffice.Inourview,thecurrentspecialissueclearlyidentifiesthemajorresearchquestionsfortheyearstocome,aswellasthedirectionstotake.AdditionalinformationFundingThisworkwassupportedbytheNetherlandsOrganizationforScientificResearch(NWO-Vicigrant453-16-002toCNLO)andtheEuropeanResearchCouncil(ERC)(grantagreementNo863732withSVdS). ReferencesBettencourt,K.C.,&Xu,Y.(2016).Decodingthecontentofvisualshort-termmemoryunderdistractioninoccipitalandparietalareas.NatureNeuroscience,19(1),150–157.https://doi.org/10.1038/nn.4174 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Bocincova,A.,Olivers,C.N.,Stokes,M.G.,&Manohar,S.G.(2020).Acommonneuralnetworkarchitectureforvisualsearchandworkingmemory.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]Christophel,T.B.,Iamshchinina,P.,Yan,C.,Allefeld,C.,&Haynes,J.D.(2018).Corticalspecializationforattendedversusunattendedworkingmemory.NatureNeuroscience,21(4),494–496.https://doi.org/10.1038/s41593-018-0094-4 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]deVries,I.E.J.,vanDriel,J.,Karacaoglu,M.,&Olivers,C.N.L.(2018).Priorityswitchesinvisualworkingmemoryaresupportedbyfrontaldeltaandposterioralphainteractions.CerebralCortex,28(11),4090–4104.https://doi.org/10.1093/cercor/bhy223 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Gazzaley,A.,&Nobre,A.C.(2012).Top-downmodulation:Bridgingselectiveattentionandworkingmemory.TrendsinCognitiveSciences,16(2),129–135.https://doi.org/10.1016/j.tics.2011.11.014 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Harrison,S.A.,&Tong,F.(2009).Decodingrevealsthecontentsofvisualworkingmemoryinearlyvisualareas.Nature,458(7238),632–635.https://doi.org/10.1038/nature07832 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Heuer,A.,Ohl,S.,&Rolfs,M.(2020).Memoryforaction:Afunctionalviewofselectioninvisualworkingmemory.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]Kruijne,W.,Bohte,S.M.,Roelfsema,P.R.,&Olivers,C.N.(2020).Flexibleworkingmemorythroughselectivegatingandattentionaltagging.NeuralComputation. [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Liesefeld,H.R.,Liesefeld,A.M.,Sauseng,P.,Jacob,S.N.,&Müller,H.J.(2020).Howvisualworkingmemoryhandlesdistraction:Cognitivemechanismsandelectrophysiologicalcorrelates.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]Luck,S.J.,&Vogel,E.K.(2013).Visualworkingmemorycapacity:Frompsychophysicsandneurobiologytoindividualdifferences.TrendsinCognitiveSciences,17(8),391–400.https://doi.org/10.1016/j.tics.2013.06.006 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Manohar,S.G.,Zokaei,N.,Fallon,S.J.,Vogels,T.,&Husain,M.(2019).Neuralmechanismsofattendingtoitemsinworkingmemory.Neuroscience&BiobehavioralReviews,101,1–12.https://doi.org/10.1016/j.neubiorev.2019.03.017 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Mostert,P.,Albers,A.M.,Brinkman,L.,Todorova,L.,Kok,P.,&deLange,F.P.(2018).Eyemovement-relatedconfoundsinneuraldecodingofvisualworkingmemoryrepresentations.eNeuro,5(4).https://doi.org/10.1523/ENEURO.0401-17.2018 [Crossref],[PubMed], [GoogleScholar]Myers,N.E.,Stokes,M.G.,&Nobre,A.C.(2017).Prioritizinginformationduringworkingmemory:Beyondsustainedinternalattention.TrendsinCognitiveSciences,21(6),449–461.https://doi.org/10.1016/j.tics.2017.03.010 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Nobre,A.C.,&Stokes,M.G.(2019).Prememberingexperience:Ahierarchyoftime-scalesforproactiveattention.Neuron,104(1),132–146.https://doi.org/10.1016/j.neuron.2019.08.030 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Olivers,C.N.,Peters,J.,Houtkamp,R.,&Roelfsema,P.R.(2011).Differentstatesinvisualworkingmemory:whenitguidesattentionandwhenitdoesnot.TrendsinCognitiveSciences,15(7),327–334.https://doi.org/10.1016/j.tics.2011.05.004 [PubMed],[WebofScience®], [GoogleScholar]Olivers,C.N.,&Roelfsema,P.R.(2020).Attentionforactioninvisualworkingmemory.Cortex,131,179–194.https://doi.org/10.1016/j.cortex.2020.07.011 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]O’Regan,J.K.(1992).Solvingthe“real”mysteriesofvisualperception:Theworldasanoutsidememory.CanadianJournalofPsychology/Revuecanadiennedepsychologie,46(3),461.https://doi.org/10.1037/h0084327 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Ort,E.,&Olivers,C.(2020).Thecapacityofmultiple-targetsearch.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]Postle,B.R.,&Yu,Q.(2020).Neuroimagingandthelocalizationoffunctioninvisualcognition.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]Rademaker,R.L.,Chunharas,C.,&Serences,J.T.(2019).Coexistingrepresentationsofsensoryandmnemonicinformationinhumanvisualcortex.NatureNeuroscience,22(8),1336–1344.https://doi.org/10.1038/s41593-019-0428-x [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Souza,A.S.,&Oberauer,K.(2016).Insearchofthefocusofattentioninworkingmemory:13yearsoftheretro-cueeffect.Attention,Perception,&Psychophysics,78(7),1839–1860.https://doi.org/10.3758/s13414-016-1108-5 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Stokes,M.,Muhle-Karbe,P.,&Myers,N.(2020).Theoreticaldistinctionbetweenfunctionalstatesinworkingmemoryandtheircorrespondingneuralstates.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]VanderStigchel,S.(2020).Anembodiedaccountofvisualworkingmemory.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]VanderStigchel,S.,&Hollingworth,A.(2018).Visuospatialworkingmemoryasafundamentalcomponentoftheeyemovementsystem.CurrentDirectionsinPsychologicalScience,27(2),136–143.https://doi.org/10.1177/0963721417741710 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]vanEde,F.(2020).Visualworkingmemoryandaction:Functionallinksandbi-directionalinfluences.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar]vanEde,F.,Chekroud,S.R.,&Nobre,A.C.(2019).Humangazetracksattentionalfocusinginmemorizedvisualspace.Naturehumanbehaviour,3(5),462.https://doi.org/10.1038/s41562-019-0549-y [Crossref],[PubMed],[WebofScience®], [GoogleScholar]vanLoon,A.M.,Olmos-Solis,K.,&Olivers,C.N.L.(2017).Subtleeyemovementmetricsrevealtask-relevantrepresentationspriortovisualsearch.JournalofVision,17(6),13.https://doi.org/10.1167/17.6.13 [Crossref],[PubMed],[WebofScience®], [GoogleScholar]Xu,Y.(2020).Revisitoncemorethesensorystorageaccountofvisualworkingmemory.VisualCognition. [Taylor&FrancisOnline],[WebofScience®], [GoogleScholar] Alternativeformats PDF EPUB MoreShareOptions   Relatedresearch Peoplealsoreadlistsarticlesthatotherreadersofthisarticlehaveread. RecommendedarticleslistsarticlesthatwerecommendandispoweredbyourAIdrivenrecommendationengine. CitedbylistsallcitingarticlesbasedonCrossrefcitations.ArticleswiththeCrossreficonwillopeninanewtab. Peoplealsoread Recommendedarticles Citedby Yourdownloadisnowinprogressandyoumayclosethiswindow DidyouknowthatwithafreeTaylor&FrancisOnlineaccountyoucangainaccesstothefollowingbenefits? Choosenewcontentalertstobeinformedaboutnewresearchofinteresttoyou Easyremoteaccesstoyourinstitution'ssubscriptionsonanydevice,fromanylocation Saveyoursearchesandschedulealertstosendyounewresults Exportyoursearchresultsintoa.csvfiletosupportyourresearch Haveanaccount? Loginnow Don'thaveanaccount? Registerforfree Loginorregistertoaccessthisfeature Haveanaccount? Loginnow Don'thaveanaccount? Registerforfree RegisterafreeTaylor&FrancisOnlineaccounttodaytoboostyourresearchandgainthesebenefits: Choosenewcontentalertstobeinformedaboutnewresearchofinteresttoyou Easyremoteaccesstoyourinstitution'ssubscriptionsonanydevice,fromanylocation Saveyoursearchesandschedulealertstosendyounewresults Exportyoursearchresultsintoa.csvfiletosupportyourresearch Register noworlearnmore



請為這篇文章評分?