效用函數 - MBA智库百科
文章推薦指數: 80 %
效用函數(Utility Function / Effectiveness Function / Utility Function Used)"效用函數" 在工具書中的解釋表示所擁有或消費的各種商品的數量。
"效用函數" 在學術 ...
效用函數
用手机看条目
扫一扫,手机看条目
出自MBA智库百科(https://wiki.mbalib.com/)
效用函數(UtilityFunction/EffectivenessFunction/UtilityFunctionUsed)
目錄
1效用函數的定義
2效用函數的形式
3效用函數的存在性問題
4效用函數案例分析
4.1案例一:效用函數在金融學中的應用[7]
5相關條目
[編輯]效用函數的定義
"效用函數"在工具書中的解釋
表示消費者在消費中所獲得的效用與所消費的商品組合之間數量關係的函數。
它被用以衡量消費者從消費既定的商品組合中所獲得滿足的程度。
運用無差異曲線只能分析兩種商品的組合,而運用效用函數則能分析更多種商品的組合。
其表達式是:U=U(x,y,z,…)式中x, y, z分別代表消費者所擁有或消費的各種商品的數量。
"效用函數"在學術文獻中的解釋
1、效用函數的定義是:設f是定義在消費集合X上的偏好關係,如果對於X中任何的x,y,xfy當且僅當u(x)u(y),則稱函數u:XnR+R是表示偏好關係f的效用函數。
[1]
2、F(X)稱為效用函數.加權P範數法的關鍵是權繫數的確定.有2種基本的方法,一是老學習法[1,2],該方法依據目標函數的相對重要性來選取權繫數。
[2]
3、一個人的效用應是財富x的函數,這個函數稱為效用函數,從理論上來講,它可以通過一系列心理測試來逼近得到每個人的效用函數.不同的決策者應有不同的效用函數.首先我們尋求效用函數所滿足的性質或某些特殊類效用函數所滿足的性質。
[3]
4、這是一種理論假設,他們運用的數學函數式所建立的模型稱為“效用函數”.按照這類模型,人都能被假設成為可以決定在每一種可能的時間分配中產生一定的利益水平,並且追求利益最大化的選擇。
[4]
5、U——第i種運輸方式的費用,有時也稱為效用函數;
T——第i種運輸方式的出行時間;
C——第i種運輸方式的運輸費用。
[5]
6、為了對控制做出評價,需要一套函數作為評價指標:其中Ut=U[Rt,At,t]用以對每步控制進行評價,稱為效用函數.J(t)函數表示了從此刻開始的每步效用函數值的累積,稱為費用函數。
[5]
[編輯]效用函數的形式
在現代消費者理論中,以商品價格向量P、消費束(商品數量向量)X、和消費者預算約束m三者為自變數的效用函數形式有兩類:一類是僅以消費束X為自變數的“直接效用函數”U(X);另一類是以商品價格向量P和消費者預算約束m兩者為自變數的“間接效用函數”v(P,m)。
直接效用函數U(X)的思想是:只要消費者購買(消費)各種商品的數量一定(而不管其他相關的經濟變數(如價格向量P)如何置定或變動),消費者的偏好或效用大小便唯一地確定。
即,確定的消費束X對應確定的效用函數值U(X)。
間接效用函數v(P,m)是建立在僅以消費束X為自變數的直接效用函數U(X)的基礎之上的。
其思路是:只要消費者面臨的商品價格向量P和消費者預算約束m兩者一定,消費者在PX=m約束下,最大化其直接效用函數U(X)的值,此時的最大U(X)值即是間接效用函數v(P,m)的函數值。
需要特別指出的是,消費者面臨的商品價格向量P和消費者預算約束m兩者確定,消費者最大化其效用水平的購買消費束X並不要求唯一確定(雖然大多數時候是唯一確定的),但這些不同的向量X所對應的直接效用函數U(X)的值卻必須是唯一的“最大值”。
現代西方經濟學關於效用函數與商品價格向量P、消費束(商品數量向量)X、和消費者預算約束m等其他經濟變數的關係,被認定為:效用函數值的大小實際上被消費者本人的消費束X唯一地確定;除消費束X之外的其他變數(如P和m)對消費者效用水平的影響,只能通過影響X間接地決定或影響效用水平。
即只要消費者購買(或消費)各種商品的數量一定(而不管其他相關的經濟變數如價格向量P如何置定或變動),其偏好或效用大小便唯一地確定。
然而,實際情形並非如此。
[編輯]效用函數的存在性問題
效用函數的存在性,用數學式表示了效用函數的2個特征:效用是隨著單個商品數量遞增而增長的,且單個商品的邊際效用是遞減的同時,得出了對於效用函數,商品組合X和商品組合Y產生的效用之和大於商品組合X+Y產生的效用.
西方經濟學效用函數的存在性定理[6]:假定消費者偏好具有完備性、自返性、傳遞性、連續性和強單調性,那麼,存在著一個能代表該偏好的連續效用函數。
在上述假設下,西方經濟學首先構造一個由所有商品的1個單位所組成的單位消費束e(e是每個分量均為1的n維實數空間Rn中的向量),然後將所有的消費束與這個單位消費束進行比較,“證明”這些所有的消費束都分別與這個單位消費束的某一個倍數是無差異的,從而可以用這個倍數來表示效用,即效用函數是存在的。
但是,西方經濟學對效用函數的存在性的證明,是一種自我迴圈的論證。
這是因為,效用函數存在性定理的那些假設條件,不是基於事實,而是基於數學證明的需要。
而要滿足這些假設條件,就必須事先要求效用函數的存在。
事實上,如果沒有效用函數的事先存在,消費者是不可能對數百萬種商品的各種數量的無窮組合進行滿足完備性、傳遞性和連續性的偏好判斷的。
而這正是在心理實驗中發現那些事先沒有設定效用函數的人們的選擇缺乏傳遞性的根本原因。
從而西方經濟學所證明的是這樣一個定理:假定消費者偏好是用一個能夠被數學證明其存在性的連續效用函數來代表的,那麼就可以證明存在這樣一個能代表該偏好的連續效用函數。
進一步地,上述存在性定理所“證明”的效用函數是連續性的,從而是基數效用,而不是非連續的序數效用。
也就是說,序數效用的存在性並沒有得到任何證明。
而基數效用的最大問題是如何確定“效用單位”。
對於一個“效用單位”到底是多少的問題,西方經濟學始終沒有回答。
實際上,從西方經濟學關於效用函數存在性的“證明”過程來看,西方經濟學實際上隱含地將一個單位消費束即所有商品各消費一個單位所帶來的消費效用作為一個效用單位。
但是,富人是不會去吃窮人的“珍珠翡翠白玉湯”的。
這種湯帶給窮人的效用為正,而帶給富人的效用為負。
從而,窮人和富人有不同的消費集,也就有了不同的單位消費束。
那麼應當按哪一個消費束來算呢?尤其是對於那些財富的數量每天在變動的人,比如今天還是白領、明天就失業成為窮人的人。
還有一個問題就是一個商品的消費單位如何計算?比如,對於水和糧食,如果都用噸來計算,那麼我們可以設想這樣一個情形:假定對某個消費者來說,3噸水和0.1噸糧食是其在某個沙漠地區生存一段時間所必需的。
用x=(3,0.1)來表示此消費束。
也就是說,我們在這裡只考慮一個簡單的二維消費空間,其中的一維代表水,另一維代表糧食。
於是,按照西方經濟學關於效用函數存在性的證明,存在某個0.1
上述並未被數學證實的效用函數形式,存在這樣一個問題:考慮一個又飢又渴的人。
設x,y分別代表水和麵包的消費量,則上述效用函數意味著,給這個消費者一粒麵包屑和無窮多的水,或者給這個消費者一滴水和無窮多的麵包,都可以讓該消費者得到無窮大的效用。
但是,在現實生活中,上述兩個消費束帶給這個消費者的無窮大效用還不如兩杯水加兩個麵包帶給他的有限效用,後者更能適合他的需要。
這個例子表明,西方經濟學不僅濫用了所謂效用函數的存在性,甚至無法給出一個不與人們的現實感受相衝突的具體的效用函數形式。
[編輯]效用函數案例分析
[編輯]案例一:效用函數在金融學中的應用[7]
1952年,Markowitz發表《投資組合選擇》,揭開了金融數學的發展。
半個世紀來,現代金融理論經歷了由簡單的定量分析到系統化,再到工程化的過程。
這個過程中,效用函數成為研究金融理論的強有力工具。
一些學者利用效用函數對Markowitz的均值一方差組合模型進行改進,形成了一些很實用的模型,比如金融學中常用的無差異曲線。
有的學者考慮到投資者對收益與風險的偏好,建立了基於投資者的指數型效用函數和冪函數等,本文將討論效用函數的這兩種形式,並利用它們分析效用函數在保險業中的應用。
一、效用函數的冪函數形式
(1)對,定義
(2)對,定義
(3)對b=0,定義
上述(3)中的形式實際上是因為
假定ζ>0是一個有界的隨機變數,對上述3種形式,當w>0時,μ(w)都是嚴格凹函數,利用詹森不等式E(g(ζ))
因此風險與回報問題可以近似於效用函數的最優化問題。
如果還服從正態分佈N(μ,σ2)即滿足E(ζ)=μ,Varζ=σ2。
當貨幣收入效用函數具有形式(1)時,,其中為正態分佈密度函數。
註意到E(μ(ζ))是遞增的,因此如果是在某一單調變換下,預期效用函數E(μ(ζ))可變換為效用函數,這兩個函數表示了同一偏好關係。
因為v只和均值和方差有關,對風險行為作出回報與風險的評價要方便。
三、購買保險與效用函數的形式
假定某人有初始財富收入為W(>0)元,且在一年後因意外原因會損失x(>0)元的概率為P,;而保持初始財富W的概率為1-P,則他在一年後的預期收入為:
,
此人面臨購買保險與不購買保險2種經驗選擇。
假定保險公司為人們提供保險並不想從個別人身上賺錢,也就是說,保險公司向個人銷售保險的預期收入為零(後面還討論保險公司的經營情況)。
用π=RP(ζ)表示保險費,顯然00,即μ(w)嚴格單調遞增,可知,得出,這說明最高保險費大於預期損失,此時作為理性人,他不會購買保險。
同時,如果保險公司收取了較高的財產保險費,理性人會採取觀望態度,保險公司的經營會受到影響。
下麵我們討論保險公司的經營狀況。
鑒於保險公司向個人銷售保險的預期收入為零,有人認為,這樣保險公司不但不會賺錢,還要在經營中花掉管理費用、員工薪水等,保險公司就會虧本。
事實並非如此。
事實上,保險公司作為經濟人,也是以追求利潤最大化為唯一目的。
保險公司是投機者,只要他們有數量可觀的保險單,他們就幾乎沒有什麼風險。
這可以由概率的大數定律來解釋:雖然在一次實驗中某事件發生的概率是隨機的,但是在大量的重覆獨立實驗中,該事件發生的頻率卻收斂於確定的常數。
這樣保險公司可以通過大面積操作來規避風險,達到盈利的目的。
我們以人身保險為例說明。
某城鎮每人每年的意外死亡率為0.006,若某人意外死亡,保險公司將賠付被保險人100000元,保險費為600元。
假設有10000人購買此保險。
則公司利潤為:
10000×600-死亡人數×100000=(60-死亡人數)×100000.
每人每年死亡可看成是進行10000次重覆獨立的試驗,即貝努里試驗,設ζ表示10000人中意外死亡人數,則ζ~b(10000,0.006)即。
公司虧本的可能性,即為
,
利用DeMoire-Laplace積分極限定理:
P{公司虧本}
由於意外死亡發生的概率很小,每人對意外死亡規避度很高,保險公司並不用擔心虧本的可能性只有0.5。
一般來說,保險公司會收取較高意外死亡保險費,並不影響該公司的業務。
例如,保險費定為800元,這時,P{公司虧本}
所以,保險公司幾乎不會虧本。
效用函數的具體形式很多,比如完全替代效用函數、線性效用函數等等,本文只介紹了效用函數的冪函數形式和指數函數形式,因為金融學中這2種形式比較常用。
在日常生活中,消費者都在有意無意地利用著效用函數進行消費,無論他們是否知道效用函數的具體形式。
效用函數已經成為用數學方法研究經濟問題的鋪路石,通過對效用函數的數理分析,使經濟學和金融學更有邏輯性。
在解決實際問題中,我們可以根據一些具體條件和約束條件,建立最優化模型。
根據對其效用函數性質的討論,我們可以得到該模型唯一的最優解,而不用效用函數形式的不唯一性。
[編輯]相關條目
效用曲線
取自"https://wiki.mbalib.com/zh-tw/%E6%95%88%E7%94%A8%E5%87%BD%E6%95%B0"
本條目對我有幫助115
赏
MBA智库APP
扫一扫,下载MBA智库APP
分享到:
下载MBA智库,阅读全文
温馨提示
复制该内容请前往MBA智库App
立即前往App
如果您認為本條目還有待完善,需要補充新內容或修改錯誤內容,請編輯條目或投訴舉報。
本條目相關文檔
基於效用函數的投資組合3頁 有效效用函數及其判據24頁 貨幣效用函數辨析16頁 基於效用函數的投資組合3頁 效用函數與納什均衡8頁 遞歸效用函數vs.冪效用函數:在戰略資產配置的分析框架下13頁 主觀效用函數模型分析23頁 (冶金行業)效用函數研究8頁 冶金行業效用函數研究8頁 第三章效用函數17頁 更多相關文檔
本条目相关课程
本条目由以下用户参与贡献
Smileandblue,Vulture,Cabbage,Caijing,Yixi,KAER,连晓雾,Gaoshan2013,Tracy,寒曦,LuyinT,刘维燎. 頁面分類:經濟術語
評論(共6條)提示:評論內容為網友針對條目"效用函數"展開的討論,與本站觀點立場無關。
218.22.21.*在2010年1月21日17:02發表
該條目非常好,對於初學者而言,很有意義。
回複評論
發表評論請文明上網,理性發言並遵守有關規定。
82.2.20.*在2011年4月3日18:31發表
求實例,看看怎麼算!THX!
回複評論
發表評論請文明上網,理性發言並遵守有關規定。
Yixi(討論|貢獻)在2011年4月9日11:00發表
82.2.20.*在2011年4月3日18:31發表
求實例,看看怎麼算!THX!
添加了新的案例,希望對您有幫助!
回複評論
發表評論請文明上網,理性發言並遵守有關規定。
115.145.87.*在2012年10月8日15:48發表
方程缺了一些運算號總算在把人逼瘋之前猜出來了
回複評論
發表評論請文明上網,理性發言並遵守有關規定。
66.249.93.*在2015年5月18日22:16發表
又飢又渴的例子不正確吧?那種是屬於飽和型需求,不屬於u=xayb那種討論範疇
回複評論
發表評論請文明上網,理性發言並遵守有關規定。
141.26.71.*在2015年5月21日03:12發表
常態分配式子錯誤,舉ㄉ例子也不適用CobbDouglas...另外我經濟學史不熟,西方經濟學證明效用函數那一段不知是不是真ㄉ?如果是真ㄉ那實在是很扯~~出個比較正常ㄉ證明就可以得諾貝爾獎ㄌ
回複評論
發表評論請文明上網,理性發言並遵守有關規定。
發表評論請文明上網,理性發言並遵守有關規定。
导航
首页
文档
百科
课堂
商学院
资讯
国际MBA
商城
企业服务
個人工具
用戶登錄創建新帳號
打开APP
搜索
全球专业中文经管百科,由121,994位网友共同编写而成,共计432,229个条目
首页
管理
营销
经济
金融
人力资源
咨询
财务
品牌
证券
物流
贸易
商学院
法律
人物
分类索引
查看
條目討論編輯收藏
简体中文繁体中文
工具▼
鏈入頁面
鏈出更改
上載文件 特殊頁面 可列印版
永久链接
導航
最新資訊
最新评论
最新推荐
热门推荐
编辑实验
使用帮助
创建条目
随便看看
INFPINTJ馬斯洛人類需求五層次理論成吉思汗鈍感力ISTP(人格特質理論)《極簡學習法》三包INTPISFP
奶頭樂理論蘑菇管理定律猴子管理法則情緒ABC理論100個最流行的管理辭彙垃圾人定律21天效應破窗效應SWOT分析模型墨菲定律
以上内容根据网友推荐自动排序生成
最後更改12:06,2020年9月22日.
智库首页-
百科首页-
关于百科-
客户端-
人才招聘-
广告合作-
权利通知-
联系我们-
免责声明
-友情链接
©2022MBAlib.com,Allrightsreserved.
闽公网安备35020302032707号
问题分类
类型
反馈内容
添加图片(选填)0/9
联系方式
取消
提交
提交成功
反馈结果请前往MBA智库App查看(我的>帮助与反馈>我的反馈)
知道了
延伸文章資訊
- 1第4 章消費者的選擇行為◇ 消費者的偏好與效用◇ 消費者的 ...
商品或勞務其效用的大小與消費者個人的偏好有. 極大的關係。所謂偏好是指消費者主觀的意願,因此 ... 效用函數係立基於三個基本的假設, ... 圖4.5 不同類型的無異曲線.
- 2經濟學之相關數理基礎OUTCOME=Wage rate =MC*MPL ...
經濟模型可以方程式、函數、座標圖形等. 數學形式表達,便於說明各經濟變數 ... 從幾何來看,導數就代表函數y=f(x)的圖形 ... 效用函數係表達消費量與效用之間的關係,.
- 3第4章偏好與消費限制
圖4-4 邊際替代率與無異曲線的形狀. X. 2016.5th Edition. 22. 第四節 邊際替代率. 例4-3. (a)請判斷例4-2中5個效用函數所對應的無異曲線是凸向原點、凹向原點...
- 4經濟學文章的圖形- 主要效用函數整理@ 陳碩老師的相簿
經濟學文章的圖形 · 上一張 下一張. 主要效用函數整理. 主要效用函數整理. x0.
- 5效用函數 - MBA智库百科
效用函數(Utility Function / Effectiveness Function / Utility Function Used)"效用函數" 在工具書中的解釋表示所擁有或消費的各種...