Logit vs Probit Models: Differences, Examples - Data Analytics

文章推薦指數: 80 %
投票人數:10人

Logit and probit models are statistical models that are used to model binary or dichotomous dependent variables. This means that the outcome ... DataAnalytics Data,DataScience,MachineLearning,AI SelectapageHome MachineLearning     DeepLearning     Python InterviewPreparation FreeAI/MLOnlineCourses Shop LogitvsProbitModels:Differences,Examples April1,2022byAjiteshKumar·1Comment Logitandprobitmodelsarestatisticalmodelsthatareusedtomodelbinaryordichotomousdependentvariables.Thismeansthattheoutcomeofinterestcanonlytakeontwopossiblevalues.Inmostcases,thesemodelsareusedtopredictwhetherornotsomethingwillhappen.Forexample,abusinessmightwanttoknowifaparticularadvertisingcampaignwillleadtoanincreaseinsales.Inthisblogpost,wewillexplainwhatlogitandprobitmodelsare,andwewillprovideexamplesofhowtheycanbeused.Asdatascientists,itisimportanttounderstandtheconceptsoflogitandprobitmodelsandwhenshouldtheybeused. TableofContents WhatareLogitmodels?WhatareProbitmodels?WhatisthedifferencebetweentheLogitandProbitmodels? WhatareLogitmodels? Logitmodelsareaformofastatisticalmodelthatisusedtopredicttheprobabilityofaneventoccurring.Logitmodelsarealsocalledlogisticregressionmodels.Thelogitmodelisbasedonthelogisticfunction(alsocalledthesigmoidfunction),whichisusedtomodelsituationswheretherearetwopossibleoutcomes.Thelogisticfunctioncanbeusedtomodelavarietyofsituations,includingbinarydependentvariables,dichotomousdependentvariables,andcategoricaldata. Thelogitmodelisusedtomodeltheoddsofsuccessofaneventasafunctionofindependentvariables.Thefollowingisthestartingpointofarrivingatthelogisticfunctionwhichisusedtomodeltheprobabilityofoccurrenceofanevent. Alogitfunctioncanbewrittenasfollows: logit(I)=log[P/(1-P)]=Z=b0+b1X1+b2X2+…..+bnXn wherePistheprobabilityofaneventoccurring,andlistheoddsofaneventoccurring.Zisthelinearcombinationofindependentvariableswithcoefficients.Theaboveequationcanbesolvedfurthertoarriveatthefollowingfunctionwhichcanbeusedtodeterminetheprobabilityofoccurrenceoftheevents. $$P=\sigma(z)=\frac{1}{1+e^{-Z}}$$ Theσ(Z)isalsocalledalogisticorsigmoidfunction.AsthevalueofZapproaches-infinity,thevalueofσ(Z)orPapproaches0.And,asthevalueofZapproaches+infinity,thevalueofσ(Z)orPapproaches1. WhatareProbitmodels? Probitmodelsareaformofastatisticalmodelthatisusedtopredicttheprobabilityofaneventoccurring.Probitmodelsaresimilartologitmodels,buttheyarebasedontheprobitfunctioninsteadofthelogisticfunction.TheProbitmodeldeterminesthelikelihoodthatanitemoreventwillfallintooneofarangeofcategoriesbyestimatingtheprobabilitythatobservationwithspecificfeatureswillbelongtoaparticularcategory.InthecaseoftheProbitmodel,thedependentvariableiscategoricalandcanonlytakeononeofthetwovalues,suchasyesorno,trueorfalse. TheProbitmodelcanberepresentedusingthefollowingformula: Pr(Y=1|X)=Φ(Z)=Z=Φ(b0+b1X1+b2X2+…..+bnXn) Where,Yisthedependentvariableandrepresentstheprobabilitythattheeventwilloccur(hence,Y=1)giventhevariablesX.Φisthecumulativestandardnormaldistributionfunction. Zisthelinearcombinationofindependentvariables(X)withcoefficients(b0,b1,b2…bn).Inthecaseofthelogitmodel,weuselogisticorsigmoidfunctioninsteadofΦwhichiscumulativestandardnormaldistributionfunction. WhatisthedifferencebetweentheLogitandProbitmodels? ThefollowingaresomeofthekeydifferencesbetweentheLogitandProbitmodels: Thelogitmodelisusedtomodeltheoddsofsuccessofaneventasafunctionofindependentvariables,whiletheprobitmodelisusedtodeterminethelikelihoodthatanitemoreventwillfallintooneofarangeofcategoriesbyestimatingtheprobabilitythatobservationwithspecificfeatureswillbelongtoaparticularcategory. Inthecaseofthelogitmodel,weusealogisticorsigmoidfunctioninsteadofΦwhichisacumulativestandardnormaldistributionfunction. Logisticregressionmodelsarealsocalledlogitmodels,whileprobitregressionmodelsarealsocalledprobitmodels. LogitmodelsareusedtomodelLogisticdistributionwhileprobitmodelsareusedtomodelthecumulativestandardnormaldistribution. ThepicturebelowrepresentstheLogit&Probitmodels: Probitmodelsaslikethelogitmodelsareusedtopredicttheprobabilityofaneventoccurring.Probitmodelsaresimilartologitmodels,buttheyarebasedonprobitsinsteadlogisticfunctions.Theprobitmodeldeterminesthelikelihoodthatanitemoreventwillfallintooneofarangeofcategoriesbyestimatingtheprobabilitythatobservationwithspecificfeatureswillbelongtoaparticularcategory.Theprocessforcalculatingprobabilitiesinlogitandprobitsdifferfromeachotherbecauselogisticfunctionsuselinearcombinationswhileprobityusescumulativestandardnormaldistributionfunction. AuthorRecentPostsFollowmeAjiteshKumarIhavebeenrecentlyworkingintheareaofDataanalyticsincludingDataScienceandMachineLearning/DeepLearning.IamalsopassionateaboutdifferenttechnologiesincludingprogramminglanguagessuchasJava/JEE,Javascript,Python,R,Julia,etc,andtechnologiessuchasBlockchain,mobilecomputing,cloud-nativetechnologies,applicationsecurity,cloudcomputingplatforms,bigdata,etc.Forlatestupdatesandblogs,followusonTwitter.IwouldlovetoconnectwithyouonLinkedin.CheckoutmylatestbooktitledasFirstPrinciplesThinking:BuildingwinningproductsusingfirstprinciplesthinkingFollowmeLatestpostsbyAjiteshKumar(seeall) LearningCurvesPythonSklearnExample-September9,2022 MachineLearningSklearnPipeline–PythonExample-September9,2022 SequenceModelsQuiz1–TestYourUnderstanding-September5,2022 AjiteshKumar IhavebeenrecentlyworkingintheareaofDataanalyticsincludingDataScienceandMachineLearning/DeepLearning.IamalsopassionateaboutdifferenttechnologiesincludingprogramminglanguagessuchasJava/JEE,Javascript,Python,R,Julia,etc,andtechnologiessuchasBlockchain,mobilecomputing,cloud-nativetechnologies,applicationsecurity,cloudcomputingplatforms,bigdata,etc.Forlatestupdatesandblogs,followusonTwitter.IwouldlovetoconnectwithyouonLinkedin. CheckoutmylatestbooktitledasFirstPrinciplesThinking:Buildingwinningproductsusingfirstprinciplesthinking PostedinDataScience,MachineLearning,statistics.TaggedwithDataScience,machinelearning. ←LinearvsLogisticRegression:Differences,Examples StepsforEvaluating&ValidatingTime-SeriesModels→ OneResponse ObedChanda August29,2022at12:56am Thanks.Thisisquiteinformative.IfeelconfidentthatIcanusethesemodelsinresearchnow. Reply LeaveaReplyCancelreplyYouremailaddresswillnotbepublished.Requiredfieldsaremarked*Comment*Name* Email* Website Timelimitisexhausted.PleasereloadtheCAPTCHA. eight  −   =  reportthisad Searchfor: RecentPosts LearningCurvesPythonSklearnExample MachineLearningSklearnPipeline–PythonExample SequenceModelsQuiz1–TestYourUnderstanding CreditRiskModeling&MachineLearningUseCases DataLineageConcepts,Examples&Tools TagCloudai(79) Angular(50) angularjs(104) api(16) ApplicationSecurity(22) artificialintelligence(20) AWS(23) bigdata(40) bigdata(11) blockchain(62) cloud(11) cloudcomputing(11) dataanalytics(30) datascience(34) DataScience(393) DeepLearning(39) docker(26) freshers(14) google(14) googleglass(11) hyperledger(18) Interviewquestions(76) Java(92) javascript(103) Kubernetes(19) machinelearning(375) mongodb(16) news(13) nlp(13) nosql(17) python(101) QA(12) quantumcomputing(13) reactjs(15) rprogramming(11) sklearn(30) SoftwareQuality(11) springframework(16) statistics(36) testing(16) tools(11) tutorials(14) UI(13) UnitTesting(18) web(16) RecentCommentsSequenceModelsQuiz1-TestYourUnderstanding-DataAnalyticsonWhatareSequenceModels:Types&ExamplesCreditRiskModeling&MachineLearningUseCases-DataAnalyticsonProbabilityconcepts,formulas&real-worldexamplesObedChandaonLogitvsProbitModels:Differences,ExamplesPerformancemetricsforTime-seriesForecastingmodels-DataAnalyticsonDifferenttypesofTime-seriesForecastingModelsSampleDatasetforRegression&Classification:Python-DataAnalyticsonLinearRegressionExplainedwithRealLifeExampleSignupformonthlynewsletter Name Email reportthisadTwitterFeeds Ajitesh|Author-FirstPrinciplesThinking Follow AuthorofFirstprinciplesthinking(https://t.co/Wj6plka3hf),Authorathttps://t.co/z3FBP9BFk3 #Innovation#DataScience#Data#AI#MachineLearning Ajitesh|Author-FirstPrinciplesThinking @vitalflux · 16Aug Adatalakeisalargerepositoryofdatathatcanbeusedforanalytics,reporting,etc.Fewbenefits: -Abilitytostoremassiveamountsofdata -Abilitytoquicklyandeasilyaccessthedata -Abilitytoruncomplexanalyticsondata #Data#DataScience#DataAnalytics ReplyonTwitter1559526577540853761 RetweetonTwitter1559526577540853761 1 LikeonTwitter1559526577540853761 1 Twitter 1559526577540853761 LoadMore reportthisad reportthisad AboutUs Vitalflux.comisdedicatedtohelpsoftwareengineers&datascientistsgettechnologynews,practicetests,tutorialsinordertoreskill/acquirenewerskillsfromtime-to-time. Thankyouforvisitingoursitetoday.Wewelcomeallyoursuggestionsinordertomakeourwebsitebetter.Pleasefeelfreetoshareyourthoughts. DataAnalytics©2022 PoweredbyWordPress. DesignbyWildWebLab x



請為這篇文章評分?