Logistic regression - Wikipedia

文章推薦指數: 80 %
投票人數:10人

Formally, in binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" ... Logisticregression FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Statisticalmodelforabinarydependentvariable "Logitmodel"redirectshere.NottobeconfusedwithLogitfunction. Examplegraphofalogisticregressioncurvefittedtodata.Thecurveshowstheprobabilityofpassinganexam(binarydependentvariable)versushoursstudying(scalarindependentvariable).See§ Exampleforworkeddetails. Instatistics,thelogisticmodel(orlogitmodel)isastatisticalmodelthatmodelstheprobabilityofaneventtakingplacebyhavingthelog-oddsfortheeventbealinearcombinationofoneormoreindependentvariables.Inregressionanalysis,logisticregression[1](orlogitregression)isestimatingtheparametersofalogisticmodel(thecoefficientsinthelinearcombination).Formally,inbinarylogisticregressionthereisasinglebinarydependentvariable,codedbyanindicatorvariable,wherethetwovaluesarelabeled"0"and"1",whiletheindependentvariablescaneachbeabinaryvariable(twoclasses,codedbyanindicatorvariable)oracontinuousvariable(anyrealvalue).Thecorrespondingprobabilityofthevaluelabeled"1"canvarybetween0(certainlythevalue"0")and1(certainlythevalue"1"),hencethelabeling;[2]thefunctionthatconvertslog-oddstoprobabilityisthelogisticfunction,hencethename.Theunitofmeasurementforthelog-oddsscaleiscalledalogit,fromlogisticunit,hencethealternativenames.See§ Backgroundand§ Definitionforformalmathematics,and§ Exampleforaworkedexample. Binaryvariablesarewidelyusedinstatisticstomodeltheprobabilityofacertainclassoreventtakingplace,suchastheprobabilityofateamwinning,ofapatientbeinghealthy,etc.(see§ Applications),andthelogisticmodelhasbeenthemostcommonlyusedmodelforbinaryregressionsinceabout1970.[3]Binaryvariablescanbegeneralizedtocategoricalvariableswhentherearemorethantwopossiblevalues(e.g.whetheranimageisofacat,dog,lion,etc.),andthebinarylogisticregressiongeneralizedtomultinomiallogisticregression.Ifthemultiplecategoriesareordered,onecanusetheordinallogisticregression(forexampletheproportionaloddsordinallogisticmodel[4]).See§ Extensionsforfurtherextensions.Thelogisticregressionmodelitselfsimplymodelsprobabilityofoutputintermsofinputanddoesnotperformstatisticalclassification(itisnotaclassifier),thoughitcanbeusedtomakeaclassifier,forinstancebychoosingacutoffvalueandclassifyinginputswithprobabilitygreaterthanthecutoffasoneclass,belowthecutoffastheother;thisisacommonwaytomakeabinaryclassifier. Analogouslinearmodelsforbinaryvariableswithadifferentsigmoidfunctioninsteadofthelogisticfunction(toconvertthelinearcombinationtoaprobability)canalsobeused,mostnotablytheprobitmodel;see§ Alternatives.Thedefiningcharacteristicofthelogisticmodelisthatincreasingoneoftheindependentvariablesmultiplicativelyscalestheoddsofthegivenoutcomeataconstantrate,witheachindependentvariablehavingitsownparameter;forabinarydependentvariablethisgeneralizestheoddsratio.Moreabstractly,thelogisticfunctionisthenaturalparameterfortheBernoullidistribution,andinthissenseisthe"simplest"waytoconvertarealnumbertoaprobability.Inparticular,itmaximizesentropy(minimizesaddedinformation),andinthissensemakesthefewestassumptionsofthedatabeingmodeled;see§ Maximumentropy. Theparametersofalogisticregressionaremostcommonlyestimatedbymaximum-likelihoodestimation(MLE).Thisdoesnothaveaclosed-formexpression,unlikelinearleastsquares;see§ Modelfitting.LogisticregressionbyMLEplaysasimilarlybasicroleforbinaryorcategoricalresponsesaslinearregressionbyordinaryleastsquares(OLS)playsforscalarresponses:itisasimple,well-analyzedbaselinemodel;see§ Comparisonwithlinearregressionfordiscussion.ThelogisticregressionasageneralstatisticalmodelwasoriginallydevelopedandpopularizedprimarilybyJosephBerkson,[5]beginninginBerkson(1944)harvtxterror:notarget:CITEREFBerkson1944(help),wherehecoined"logit";see§ History. PartofaseriesonRegressionanalysis Models Linearregression Simpleregression Polynomialregression Generallinearmodel Generalizedlinearmodel Vectorgeneralizedlinearmodel Discretechoice Binomialregression Binaryregression Logisticregression Multinomiallogisticregression Mixedlogit Probit Multinomialprobit Orderedlogit Orderedprobit Poisson Multilevelmodel Fixedeffects Randomeffects Linearmixed-effectsmodel Nonlinearmixed-effectsmodel Nonlinearregression Supportvectorregression Nonparametric Semiparametric Robust Quantile Isotonic Principalcomponents Leastangle Local Segmented Errors-in-variables Estimation Leastsquares Linear Non-linear Ordinary Weighted Generalized Generalizedestimatingequation Partial Total Non-negative Ridgeregression Regularized Leastabsolutedeviations Iterativelyreweighted Bayesian Bayesianmultivariate Least-squaresspectralanalysis HeteroscedasticityConsistentRegressionStandardErrors HeteroscedasticityandAutocorrelationConsistentRegressionStandardErrors Background Regressionvalidation Meanandpredictedresponse Errorsandresiduals Goodnessoffit Studentizedresidual Gauss–Markovtheorem  Mathematicsportalvte Contents 1Applications 2Example 2.1Problem 2.2Model 2.3Fit 2.4Parameterestimation 2.5Predictions 2.6Modelevaluation 2.7Generalizations 3Background 3.1Definitionofthelogisticfunction 3.2Definitionoftheinverseofthelogisticfunction 3.3Interpretationoftheseterms 3.4Definitionoftheodds 3.5Theoddsratio 3.6Multipleexplanatoryvariables 4Definition 4.1Manyexplanatoryvariables,twocategories 4.2Multinomiallogisticregression:Manyexplanatoryvariablesandmanycategories 5Interpretations 5.1Asageneralizedlinearmodel 5.2Asalatent-variablemodel 5.3Two-waylatent-variablemodel 5.3.1Example 5.4Asa"log-linear"model 5.5Asasingle-layerperceptron 5.6Intermsofbinomialdata 6Modelfitting 6.1Maximumlikelihoodestimation(MLE) 6.2Iterativelyreweightedleastsquares(IRLS) 6.3Bayesian 6.4"Ruleoften" 7Errorandsignificanceoffit 7.1Devianceandlikelihoodratiotest─asimplecase 7.2Goodnessoffitsummary 7.2.1Devianceandlikelihoodratiotests 7.2.2Pseudo-R-squared 7.2.3Hosmer–Lemeshowtest 7.3Coefficientsignificance 7.3.1Likelihoodratiotest 7.3.2Waldstatistic 7.3.3Case-controlsampling 8Discussion 9Maximumentropy 9.1Proof 9.2Otherapproaches 10Comparisonwithlinearregression 11Alternatives 12History 13Extensions 14Software 15Seealso 16References 17Furtherreading 18Externallinks Applications[edit] Logisticregressionisusedinvariousfields,includingmachinelearning,mostmedicalfields,andsocialsciences.Forexample,theTraumaandInjurySeverityScore(TRISS),whichiswidelyusedtopredictmortalityininjuredpatients,wasoriginallydevelopedbyBoydetal.usinglogisticregression.[6]Manyothermedicalscalesusedtoassessseverityofapatienthavebeendevelopedusinglogisticregression.[7][8][9][10]Logisticregressionmaybeusedtopredicttheriskofdevelopingagivendisease(e.g.diabetes;coronaryheartdisease),basedonobservedcharacteristicsofthepatient(age,sex,bodymassindex,resultsofvariousbloodtests,etc.).[11][12]AnotherexamplemightbetopredictwhetheraNepalesevoterwillvoteNepaliCongressorCommunistPartyofNepalorAnyOtherParty,basedonage,income,sex,race,stateofresidence,votesinpreviouselections,etc.[13]Thetechniquecanalsobeusedinengineering,especiallyforpredictingtheprobabilityoffailureofagivenprocess,systemorproduct.[14][15]Itisalsousedinmarketingapplicationssuchaspredictionofacustomer'spropensitytopurchaseaproductorhaltasubscription,etc.[16]Ineconomicsitcanbeusedtopredictthelikelihoodofapersonendingupinthelaborforce,andabusinessapplicationwouldbetopredictthelikelihoodofahomeownerdefaultingonamortgage.Conditionalrandomfields,anextensionoflogisticregressiontosequentialdata,areusedinnaturallanguageprocessing. Example[edit] Problem[edit] Theimagerepresentswhatisincludedinlogisticregression,includinganexploratoryvariable,event,andtwopossibleoutcomes.Theexploratoryvariableisunderlinedintheexampleabove,theeventistheexam,whiletheoutcomesareeitherpassorfail.Notethattheexploratoryvariable,event,andoutcomescanchangebasedonthelogisticregressionyouchoosetoconduct.Besidesexams,forexample,eventscanalsoincludeinterventions,treatments,gatherings,etc., Asasimpleexample,wecanusealogisticregressionwithoneexplanatoryvariableandtwocategoriestoanswerthefollowingquestion: Agroupof20studentsspendsbetween0and6hoursstudyingforanexam.Howdoesthenumberofhoursspentstudyingaffecttheprobabilityofthestudentpassingtheexam? Thereasonforusinglogisticregressionforthisproblemisthatthevaluesofthedependentvariable,passandfail,whilerepresentedby"1"and"0",arenotcardinalnumbers.Iftheproblemwaschangedsothatpass/failwasreplacedwiththegrade0–100(cardinalnumbers),thensimpleregressionanalysiscouldbeused. Thetableshowsthenumberofhourseachstudentspentstudying,andwhethertheypassed(1)orfailed(0). Hours(xk) 0.50 0.75 1.00 1.25 1.50 1.75 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 4.00 4.25 4.50 4.75 5.00 5.50 Pass(yk) 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 Wewishtofitalogisticfunctiontothedataconsistingofthehoursstudied(xk)andtheoutcomeofthetest(yk =1forpass,0forfail).Thedatapointsareindexedbythesubscriptkwhichrunsfrom k = 1 {\displaystylek=1} to k = K = 20 {\displaystylek=K=20} .Thexvariableiscalledthe"explanatoryvariable",andtheyvariableiscalledthe"categoricalvariable"consistingoftwocategories:"pass"or"fail"correspondingtothecategoricalvalues1and0respectively. Model[edit] Graphofalogisticregressioncurvefittedtothe(xm,ym)data.Thecurveshowstheprobabilityofpassinganexamversushoursstudying. Thelogisticfunctionisoftheform: p ( x ) = 1 1 + e − ( x − μ ) / s {\displaystylep(x)={\frac{1}{1+e^{-(x-\mu)/s}}}} whereμisalocationparameter(themidpointofthecurve,where p ( μ ) = 1 / 2 {\displaystylep(\mu)=1/2} )andsisascaleparameter.Thisexpressionmayberewrittenas: p ( x ) = 1 1 + e − ( β 0 + β 1 x ) {\displaystylep(x)={\frac{1}{1+e^{-(\beta_{0}+\beta_{1}x)}}}} where β 0 = − μ / s {\displaystyle\beta_{0}=-\mu/s} andisknownastheintercept(itistheverticalinterceptory-interceptoftheline y = β 0 + β 1 x {\displaystyley=\beta_{0}+\beta_{1}x} ),and β 1 = 1 / s {\displaystyle\beta_{1}=1/s} (inversescaleparameterorrateparameter):thesearethey-interceptandslopeofthelog-oddsasafunctionofx.Conversely, μ = − β 0 / β 1 {\displaystyle\mu=-\beta_{0}/\beta_{1}} and s = 1 / β 1 {\displaystyles=1/\beta_{1}} . Fit[edit] Theusualmeasureofgoodnessoffitforalogisticregressionuseslogisticloss(orlogloss),thenegativelog-likelihood.Foragivenxkandyk,write p k = p ( x k ) {\displaystylep_{k}=p(x_{k})} .The p k {\displaystylep_{k}} aretheprobabilitiesthatthecorresponding y k {\displaystyley_{k}} willbeunityand 1 − p k {\displaystyle1-p_{k}} aretheprobabilitiesthattheywillbezero(seeBernoullidistribution).Wewishtofindthevaluesof β 0 {\displaystyle\beta_{0}} and β 1 {\displaystyle\beta_{1}} whichgivethe"bestfit"tothedata.Inthecaseoflinearregression,thesumofthesquareddeviationsofthefitfromthedatapoints(yk),thesquarederrorloss,istakenasameasureofthegoodnessoffit,andthebestfitisobtainedwhenthatfunctionisminimized. Theloglossforthek-thpointis: { − ln ⁡ p k  if  y k = 1 , − ln ⁡ ( 1 − p k )  if  y k = 0. {\displaystyle{\begin{cases}-\lnp_{k}&{\text{if}}y_{k}=1,\\-\ln(1-p_{k})&{\text{if}}y_{k}=0.\end{cases}}} Theloglosscanbeinterpretedasthe"surprisal"oftheactualoutcome y k {\displaystyley_{k}} relativetotheprediction p k {\displaystylep_{k}} ,andisameasureofinformationcontent.Notethatloglossisalwaysgreaterthanorequalto0,equals0onlyincaseofaperfectprediction(i.e.,when p k = 1 {\displaystylep_{k}=1} and y k = 1 {\displaystyley_{k}=1} ,or p k = 0 {\displaystylep_{k}=0} and y k = 0 {\displaystyley_{k}=0} ),andapproachesinfinityasthepredictiongetsworse(i.e.,when y k = 1 {\displaystyley_{k}=1} and p k → 0 {\displaystylep_{k}\to0} or y k = 0 {\displaystyley_{k}=0} and p k → 1 {\displaystylep_{k}\to1} ),meaningtheactualoutcomeis"moresurprising".Sincethevalueofthelogisticfunctionisalwaysstrictlybetweenzeroandone,theloglossisalwaysgreaterthanzeroandlessthaninfinity.Notethatunlikeinalinearregression,wherethemodelcanhavezerolossatapointbypassingthroughadatapoint(andzerolossoverallifallpointsareonaline),inalogisticregressionitisnotpossibletohavezerolossatanypoints,since y k {\displaystyley_{k}} iseither0or1,but 0 < p k < 1 {\displaystyle0 0    i.e.  − ε i < β ⋅ X i , 0 otherwise. {\displaystyleY_{i}={\begin{cases}1&{\text{if}}Y_{i}^{\ast}>0\{\text{i.e.}}-\varepsilon_{i} 0 ∣ X i ) = Pr ( β ⋅ X i + ε i > 0 ) = Pr ( ε i > − β ⋅ X i ) = Pr ( ε i < β ⋅ X i ) (becausethelogisticdistributionissymmetric) = logit − 1 ⁡ ( β ⋅ X i ) = p i (seeabove) {\displaystyle{\begin{aligned}\Pr(Y_{i}=1\mid\mathbf{X}_{i})&=\Pr(Y_{i}^{\ast}>0\mid\mathbf{X}_{i})\\[5pt]&=\Pr({\boldsymbol{\beta}}\cdot\mathbf{X}_{i}+\varepsilon_{i}>0)\\[5pt]&=\Pr(\varepsilon_{i}>-{\boldsymbol{\beta}}\cdot\mathbf{X}_{i})\\[5pt]&=\Pr(\varepsilon_{i} Y i 0 ∗ , 0 otherwise. {\displaystyleY_{i}={\begin{cases}1&{\text{if}}Y_{i}^{1\ast}>Y_{i}^{0\ast},\\0&{\text{otherwise.}}\end{cases}}} Thismodelhasaseparatelatentvariableandaseparatesetofregressioncoefficientsforeachpossibleoutcomeofthedependentvariable.Thereasonforthisseparationisthatitmakesiteasytoextendlogisticregressiontomulti-outcomecategoricalvariables,asinthemultinomiallogitmodel.Insuchamodel,itisnaturaltomodeleachpossibleoutcomeusingadifferentsetofregressioncoefficients.Itisalsopossibletomotivateeachoftheseparatelatentvariablesasthetheoreticalutilityassociatedwithmakingtheassociatedchoice,andthusmotivatelogisticregressionintermsofutilitytheory.(Intermsofutilitytheory,arationalactoralwayschoosesthechoicewiththegreatestassociatedutility.)Thisistheapproachtakenbyeconomistswhenformulatingdiscretechoicemodels,becauseitbothprovidesatheoreticallystrongfoundationandfacilitatesintuitionsaboutthemodel,whichinturnmakesiteasytoconsidervarioussortsofextensions.(Seetheexamplebelow.) Thechoiceofthetype-1extremevaluedistributionseemsfairlyarbitrary,butitmakesthemathematicsworkout,anditmaybepossibletojustifyitsusethroughrationalchoicetheory. Itturnsoutthatthismodelisequivalenttothepreviousmodel,althoughthisseemsnon-obvious,sincetherearenowtwosetsofregressioncoefficientsanderrorvariables,andtheerrorvariableshaveadifferentdistribution.Infact,thismodelreducesdirectlytothepreviousonewiththefollowingsubstitutions: β = β 1 − β 0 {\displaystyle{\boldsymbol{\beta}}={\boldsymbol{\beta}}_{1}-{\boldsymbol{\beta}}_{0}} ε = ε 1 − ε 0 {\displaystyle\varepsilon=\varepsilon_{1}-\varepsilon_{0}} Anintuitionforthiscomesfromthefactthat,sincewechoosebasedonthemaximumoftwovalues,onlytheirdifferencematters,nottheexactvalues—andthiseffectivelyremovesonedegreeoffreedom.Anothercriticalfactisthatthedifferenceoftwotype-1extreme-value-distributedvariablesisalogisticdistribution,i.e. ε = ε 1 − ε 0 ∼ Logistic ⁡ ( 0 , 1 ) . {\displaystyle\varepsilon=\varepsilon_{1}-\varepsilon_{0}\sim\operatorname{Logistic}(0,1).} Wecandemonstratetheequivalentasfollows: Pr ( Y i = 1 ∣ X i ) = Pr ( Y i 1 ∗ > Y i 0 ∗ ∣ X i ) = Pr ( Y i 1 ∗ − Y i 0 ∗ > 0 ∣ X i ) = Pr ( β 1 ⋅ X i + ε 1 − ( β 0 ⋅ X i + ε 0 ) > 0 ) = Pr ( ( β 1 ⋅ X i − β 0 ⋅ X i ) + ( ε 1 − ε 0 ) > 0 ) = Pr ( ( β 1 − β 0 ) ⋅ X i + ( ε 1 − ε 0 ) > 0 ) = Pr ( ( β 1 − β 0 ) ⋅ X i + ε > 0 ) (substitute  ε  asabove) = Pr ( β ⋅ X i + ε > 0 ) (substitute  β  asabove) = Pr ( ε > − β ⋅ X i ) (now,sameasabovemodel) = Pr ( ε < β ⋅ X i ) = logit − 1 ⁡ ( β ⋅ X i ) = p i {\displaystyle{\begin{aligned}\Pr(Y_{i}=1\mid\mathbf{X}_{i})={}&\Pr\left(Y_{i}^{1\ast}>Y_{i}^{0\ast}\mid\mathbf{X}_{i}\right)&\\[5pt]={}&\Pr\left(Y_{i}^{1\ast}-Y_{i}^{0\ast}>0\mid\mathbf{X}_{i}\right)&\\[5pt]={}&\Pr\left({\boldsymbol{\beta}}_{1}\cdot\mathbf{X}_{i}+\varepsilon_{1}-\left({\boldsymbol{\beta}}_{0}\cdot\mathbf{X}_{i}+\varepsilon_{0}\right)>0\right)&\\[5pt]={}&\Pr\left(({\boldsymbol{\beta}}_{1}\cdot\mathbf{X}_{i}-{\boldsymbol{\beta}}_{0}\cdot\mathbf{X}_{i})+(\varepsilon_{1}-\varepsilon_{0})>0\right)&\\[5pt]={}&\Pr(({\boldsymbol{\beta}}_{1}-{\boldsymbol{\beta}}_{0})\cdot\mathbf{X}_{i}+(\varepsilon_{1}-\varepsilon_{0})>0)&\\[5pt]={}&\Pr(({\boldsymbol{\beta}}_{1}-{\boldsymbol{\beta}}_{0})\cdot\mathbf{X}_{i}+\varepsilon>0)&&{\text{(substitute}}\varepsilon{\text{asabove)}}\\[5pt]={}&\Pr({\boldsymbol{\beta}}\cdot\mathbf{X}_{i}+\varepsilon>0)&&{\text{(substitute}}{\boldsymbol{\beta}}{\text{asabove)}}\\[5pt]={}&\Pr(\varepsilon>-{\boldsymbol{\beta}}\cdot\mathbf{X}_{i})&&{\text{(now,sameasabovemodel)}}\\[5pt]={}&\Pr(\varepsilon3.3.co;2-f.PMID 9160492. ^Harrell,FrankE.(2010).RegressionModelingStrategies:WithApplicationstoLinearModels,LogisticRegression,andSurvivalAnalysis.NewYork:Springer.ISBN 978-1-4419-2918-1.[page needed] ^abhttps://class.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/classification.pdfslide16 ^abMount,J.(2011)."TheEquivalenceofLogisticRegressionandMaximumEntropymodels"(PDF).RetrievedFeb23,2022. ^Ng,Andrew(2000)."CS229LectureNotes"(PDF).CS229LectureNotes:16–19. ^Rodríguez,G.(2007).LectureNotesonGeneralizedLinearModels.pp. Chapter3,page45. ^GarethJames;DanielaWitten;TrevorHastie;RobertTibshirani(2013).AnIntroductiontoStatisticalLearning.Springer.p. 6. ^Pohar,Maja;Blas,Mateja;Turk,Sandra(2004)."ComparisonofLogisticRegressionandLinearDiscriminantAnalysis:ASimulationStudy".MetodološkiZvezki.1(1). ^Cramer2002,pp. 3–5. ^Verhulst,Pierre-François(1838)."Noticesurlaloiquelapopulationpoursuitdanssonaccroissement"(PDF).CorrespondanceMathématiqueetPhysique.10:113–121.Retrieved3December2014. ^Cramer2002,p. 4,"Hedidnotsayhowhefittedthecurves." ^Verhulst,Pierre-François(1845)."Recherchesmathématiquessurlaloid'accroissementdelapopulation"[MathematicalResearchesintotheLawofPopulationGrowthIncrease].NouveauxMémoiresdel'AcadémieRoyaledesSciencesetBelles-LettresdeBruxelles.18.Retrieved2013-02-18. ^Cramer2002,p. 4. ^Cramer2002,p. 7. ^Cramer2002,p. 6. ^Cramer2002,p. 6–7. ^Cramer2002,p. 5. ^Cramer2002,p. 7–9. ^Cramer2002,p. 9. ^Cramer2002,p. 8,"AsfarasIcanseetheintroductionofthelogisticsasanalternativetothenormalprobabilityfunctionistheworkofasingleperson,JosephBerkson(1899–1982),..." ^Cramer2002,p. 11. ^abCramer,p. 13.sfnerror:notarget:CITEREFCramer(help) ^McFadden,Daniel(1973)."ConditionalLogitAnalysisofQualitativeChoiceBehavior"(PDF).InP.Zarembka(ed.).FrontiersinEconometrics.NewYork:AcademicPress.pp. 105–142.Archivedfromtheoriginal(PDF)on2018-11-27.Retrieved2019-04-20. ^Gelman,Andrew;Hill,Jennifer(2007).DataAnalysisUsingRegressionandMultilevel/HierarchicalModels.NewYork:CambridgeUniversityPress.pp. 79–108.ISBN 978-0-521-68689-1. Furtherreading[edit] Cox,DavidR.(1958)."Theregressionanalysisofbinarysequences(withdiscussion)".JRStatSocB.20(2):215–242.JSTOR 2983890. Cox,DavidR.(1966)."Someproceduresconnectedwiththelogisticqualitativeresponsecurve".InF.N.David(1966)(ed.).ResearchPapersinProbabilityandStatistics(FestschriftforJ.Neyman).London:Wiley.pp. 55–71. Cramer,J.S.(2002).Theoriginsoflogisticregression(PDF)(Technicalreport).Vol. 119.TinbergenInstitute.pp. 167–178.doi:10.2139/ssrn.360300. Publishedin:Cramer,J.S.(2004)."Theearlyoriginsofthelogitmodel".StudiesinHistoryandPhilosophyofSciencePartC:StudiesinHistoryandPhilosophyofBiologicalandBiomedicalSciences.35(4):613–626.doi:10.1016/j.shpsc.2004.09.003. Thiel,Henri(1969)."AMultinomialExtensionoftheLinearLogitModel".InternationalEconomicReview.10(3):251–59.doi:10.2307/2525642.JSTOR 2525642. Wilson,E.B.;Worcester,J.(1943)."TheDeterminationofL.D.50andItsSamplingErrorinBio-Assay".ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.29(2):79–85.Bibcode:1943PNAS...29...79W.doi:10.1073/pnas.29.2.79.PMC 1078563.PMID 16588606. Agresti,Alan.(2002).CategoricalDataAnalysis.NewYork:Wiley-Interscience.ISBN 978-0-471-36093-3. Amemiya,Takeshi(1985)."QualitativeResponseModels".AdvancedEconometrics.Oxford:BasilBlackwell.pp. 267–359.ISBN 978-0-631-13345-2. Balakrishnan,N.(1991).HandbookoftheLogisticDistribution.MarcelDekker,Inc.ISBN 978-0-8247-8587-1. Gouriéroux,Christian(2000)."TheSimpleDichotomy".EconometricsofQualitativeDependentVariables.NewYork:CambridgeUniversityPress.pp. 6–37.ISBN 978-0-521-58985-7. Greene,WilliamH.(2003).EconometricAnalysis,fifthedition.PrenticeHall.ISBN 978-0-13-066189-0. Hilbe,JosephM.(2009).LogisticRegressionModels.Chapman&Hall/CRCPress.ISBN 978-1-4200-7575-5. Hosmer,David(2013).Appliedlogisticregression.Hoboken,NewJersey:Wiley.ISBN 978-0470582473. Howell,DavidC.(2010).StatisticalMethodsforPsychology,7thed.Belmont,CA;ThomsonWadsworth.ISBN 978-0-495-59786-5. Peduzzi,P.;J.Concato;E.Kemper;T.R.Holford;A.R.Feinstein(1996)."Asimulationstudyofthenumberofeventspervariableinlogisticregressionanalysis".JournalofClinicalEpidemiology.49(12):1373–1379.doi:10.1016/s0895-4356(96)00236-3.PMID 8970487. Berry,MichaelJ.A.;Linoff,Gordon(1997).DataMiningTechniquesForMarketing,SalesandCustomerSupport.Wiley. Externallinks[edit] WikiversityhaslearningresourcesaboutLogisticregression MediarelatedtoLogisticregressionatWikimediaCommons EconometricsLecture(topic:Logitmodel)onYouTubebyMarkThoma LogisticRegressiontutorial mlelr:softwareinCforteachingpurposes vteStatistics Outline Index DescriptivestatisticsContinuousdataCenter Mean Arithmetic Cubic Generalized/power Geometric Harmonic Heinz Lehmer Median Mode Dispersion Averageabsolutedeviation Coefficientofvariation Interquartilerange Percentile Range Standarddeviation Variance Shape Centrallimittheorem Moments Kurtosis L-moments Skewness Countdata Indexofdispersion Summarytables Contingencytable Frequencydistribution Groupeddata Dependence Partialcorrelation Pearsonproduct-momentcorrelation Rankcorrelation Kendall'sτ Spearman'sρ Scatterplot Graphics Barchart Biplot Boxplot Controlchart Correlogram Fanchart Forestplot Histogram Piechart Q–Qplot Radarchart Runchart Scatterplot Stem-and-leafdisplay Violinplot DatacollectionStudydesign Effectsize Missingdata Optimaldesign Population Replication Samplesizedetermination Statistic Statisticalpower Surveymethodology Sampling Cluster Stratified Opinionpoll Questionnaire Standarderror Controlledexperiments Blocking Factorialexperiment Interaction Randomassignment Randomizedcontrolledtrial Randomizedexperiment Scientificcontrol Adaptivedesigns Adaptiveclinicaltrial Stochasticapproximation Up-and-downdesigns Observationalstudies Cohortstudy Cross-sectionalstudy Naturalexperiment Quasi-experiment StatisticalinferenceStatisticaltheory Population Statistic Probabilitydistribution Samplingdistribution Orderstatistic Empiricaldistribution Densityestimation Statisticalmodel Modelspecification Lpspace Parameter location scale shape Parametricfamily Likelihood (monotone) Location–scalefamily Exponentialfamily Completeness Sufficiency Statisticalfunctional Bootstrap U V Optimaldecision lossfunction Efficiency Statisticaldistance divergence Asymptotics Robustness FrequentistinferencePointestimation Estimatingequations Maximumlikelihood Methodofmoments M-estimator Minimumdistance Unbiasedestimators Mean-unbiasedminimum-variance Rao–Blackwellization Lehmann–Scheffétheorem Medianunbiased Plug-in Intervalestimation Confidenceinterval Pivot Likelihoodinterval Predictioninterval Toleranceinterval Resampling Bootstrap Jackknife Testinghypotheses 1-&2-tails Power Uniformlymostpowerfultest Permutationtest Randomizationtest Multiplecomparisons Parametrictests Likelihood-ratio Score/Lagrangemultiplier Wald Specifictests Z-test(normal) Student'st-test F-test Goodnessoffit Chi-squared G-test Kolmogorov–Smirnov Anderson–Darling Lilliefors Jarque–Bera Normality(Shapiro–Wilk) Likelihood-ratiotest Modelselection Crossvalidation AIC BIC Rankstatistics Sign Samplemedian Signedrank(Wilcoxon) Hodges–Lehmannestimator Ranksum(Mann–Whitney) Nonparametricanova 1-way(Kruskal–Wallis) 2-way(Friedman) Orderedalternative(Jonckheere–Terpstra) VanderWaerdentest Bayesianinference Bayesianprobability prior posterior Credibleinterval Bayesfactor Bayesianestimator Maximumposteriorestimator CorrelationRegressionanalysisCorrelation Pearsonproduct-moment Partialcorrelation Confoundingvariable Coefficientofdetermination Regressionanalysis Errorsandresiduals Regressionvalidation Mixedeffectsmodels Simultaneousequationsmodels Multivariateadaptiveregressionsplines(MARS) Linearregression Simplelinearregression Ordinaryleastsquares Generallinearmodel Bayesianregression Non-standardpredictors Nonlinearregression Nonparametric Semiparametric Isotonic Robust Heteroscedasticity Homoscedasticity Generalizedlinearmodel Exponentialfamilies Logistic(Bernoulli) /Binomial /Poissonregressions Partitionofvariance Analysisofvariance(ANOVA,anova) Analysisofcovariance MultivariateANOVA Degreesoffreedom Categorical /Multivariate /Time-series /SurvivalanalysisCategorical Cohen'skappa Contingencytable Graphicalmodel Log-linearmodel McNemar'stest Cochran-Mantel-Haenszelstatistics Multivariate Regression Manova Principalcomponents Canonicalcorrelation Discriminantanalysis Clusteranalysis Classification Structuralequationmodel Factoranalysis Multivariatedistributions Ellipticaldistributions Normal Time-seriesGeneral Decomposition Trend Stationarity Seasonaladjustment Exponentialsmoothing Cointegration Structuralbreak Grangercausality Specifictests Dickey–Fuller Johansen Q-statistic(Ljung–Box) Durbin–Watson Breusch–Godfrey Timedomain Autocorrelation(ACF) partial(PACF) Cross-correlation(XCF) ARMAmodel ARIMAmodel(Box–Jenkins) Autoregressiveconditionalheteroskedasticity(ARCH) Vectorautoregression(VAR) Frequencydomain Spectraldensityestimation Fourieranalysis Least-squaresspectralanalysis Wavelet Whittlelikelihood SurvivalSurvivalfunction Kaplan–Meierestimator(productlimit) Proportionalhazardsmodels Acceleratedfailuretime(AFT)model Firsthittingtime Hazardfunction Nelson–Aalenestimator Test Log-ranktest ApplicationsBiostatistics Bioinformatics Clinicaltrials /studies Epidemiology Medicalstatistics Engineeringstatistics Chemometrics Methodsengineering Probabilisticdesign Process /qualitycontrol Reliability Systemidentification Socialstatistics Actuarialscience Census Crimestatistics Demography Econometrics Jurimetrics Nationalaccounts Officialstatistics Populationstatistics Psychometrics Spatialstatistics Cartography Environmentalstatistics Geographicinformationsystem Geostatistics Kriging Category  Mathematicsportal Commons WikiProject AuthoritycontrolNationallibraries France(data) Germany Israel UnitedStates Other FacetedApplicationofSubjectTerminology Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=1111304332" Categories:LogisticregressionPredictiveanalyticsRegressionmodelsHiddencategories:WikipediaarticlesneedingpagenumbercitationsfromMay2012WikipediaarticlesneedingpagenumbercitationsfromOctober2019HarvandSfnno-targeterrorsArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromJanuary2017ArticlesthatmaycontainoriginalresearchfromMay2022AllarticlesthatmaycontainoriginalresearchArticlestobeexpandedfromOctober2016AllarticlestobeexpandedArticlesusingsmallmessageboxesWikipediaarticlesneedingclarificationfromMay2017ArticleswithunsourcedstatementsfromOctober2019Allarticleswithspecificallymarkedweasel-wordedphrasesArticleswithspecificallymarkedweasel-wordedphrasesfromOctober2019CommonscategorylinkfromWikidataArticleswithBNFidentifiersArticleswithGNDidentifiersArticleswithJ9UidentifiersArticleswithLCCNidentifiersArticleswithFASTidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikiversity Languages العربيةCatalàČeštinaDeutschEestiEspañolEuskaraفارسیFrançais한국어BahasaIndonesiaItalianoעבריתNederlands日本語PolskiPortuguêsРусскийSimpleEnglishSuomiSvenskaУкраїнська粵語中文 Editlinks



請為這篇文章評分?