In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order.
Monotonicfunction
FromWikipedia,thefreeencyclopedia
Jumptonavigation
Jumptosearch
Order-preservingmathematicalfunction
"Monotonicity"redirectshere.Forinformationonmonotonicityasitpertainstovotingsystems,seemonotonicitycriterion.Forinformationonmonotonicityasitpertainstologicalsystems,seeMonotonicityofentailment.
"Monotonic"redirectshere.Forotheruses,seeMonotone(disambiguation).
Figure1.Amonotonicallynon-decreasingfunction.
Figure2.Amonotonicallynon-increasingfunction
Figure3.Afunctionthatisnotmonotonic
Inmathematics,amonotonicfunction(ormonotonefunction)isafunctionbetweenorderedsetsthatpreservesorreversesthegivenorder.[1][2][3]Thisconceptfirstaroseincalculus,andwaslatergeneralizedtothemoreabstractsettingofordertheory.
Contents
1Incalculusandanalysis
1.1Inverseoffunction
1.2Monotonictransformation
1.3Somebasicapplicationsandresults
2Intopology
3Infunctionalanalysis
4Inordertheory
5Inthecontextofsearchalgorithms
6InBooleanfunctions
7Seealso
8Notes
9Bibliography
10Externallinks
Incalculusandanalysis[edit]
Incalculus,afunction
f
{\displaystylef}
definedonasubsetoftherealnumberswithrealvaluesiscalledmonotonicifandonlyifitiseitherentirelynon-increasing,orentirelynon-decreasing.[2]Thatis,asperFig.1,afunctionthatincreasesmonotonicallydoesnotexclusivelyhavetoincrease,itsimplymustnotdecrease.
Afunctioniscalledmonotonicallyincreasing(alsoincreasingornon-decreasing),[3]ifforall
x
{\displaystylex}
and
y
{\displaystyley}
suchthat
x
≤
y
{\displaystylex\leqy}
onehas
f
(
x
)
≤
f
(
y
)
{\displaystylef\!\left(x\right)\leqf\!\left(y\right)}
,so
f
{\displaystylef}
preservestheorder(seeFigure1).Likewise,afunctioniscalledmonotonicallydecreasing(alsodecreasingornon-increasing)[3]if,whenever
x
≤
y
{\displaystylex\leqy}
,then
f
(
x
)
≥
f
(
y
)
{\displaystylef\!\left(x\right)\geqf\!\left(y\right)}
,soitreversestheorder(seeFigure2).
Iftheorder
≤
{\displaystyle\leq}
inthedefinitionofmonotonicityisreplacedbythestrictorder
<
{\displaystyle
y
{\displaystylex>y}
andso,bymonotonicity,either
f
(
x
)
<
f
(
y
)
{\displaystylef\!\left(x\right)
f
(
y
)
{\displaystylef\!\left(x\right)>f\!\left(y\right)}
,thus
f
(
x
)
≠
f
(
y
)
{\displaystylef\!\left(x\right)\neqf\!\left(y\right)}
.)
Ifitisnotclearthat"increasing"and"decreasing"aretakentoincludethepossibilityofrepeatingthesamevalueatsuccessivearguments,onemayusethetermsweaklymonotone,weaklyincreasingandweaklydecreasingtostressthispossibility.
Theterms"non-decreasing"and"non-increasing"shouldnotbeconfusedwiththe(muchweaker)negativequalifications"notdecreasing"and"notincreasing".Forexample,thefunctionoffigure3firstfalls,thenrises,thenfallsagain.Itisthereforenotdecreasingandnotincreasing,butitisneithernon-decreasingnornon-increasing.
Afunction
f
(
x
)
{\displaystylef\!\left(x\right)}
issaidtobeabsolutelymonotonicoveraninterval
(
a
,
b
)
{\displaystyle\left(a,b\right)}
ifthederivativesofallordersof
f
{\displaystylef}
arenonnegativeorallnonpositiveatallpointsontheinterval.
Inverseoffunction[edit]
Afunctionthatismonotonic,butnotstrictlymonotonic,andthusconstantonaninterval,doesn'thaveaninverse.Thisisbecauseinorderforafunctiontohaveaninverse,thereneedstobeaone-to-onemappingfromtherangetothedomainofthefunction.Sinceamonotonicfunctionhassomevaluesthatareconstantinitsdomain,thismeansthattherewouldbemorethanonevalueintherangethatmapstothisconstantvalue.
However,afunctiony=g(x)thatisstrictlymonotonic,hasaninversefunctionsuchthatx=h(y)becausethereisguaranteedtoalwaysbeaone-to-onemappingfromrangetodomainofthefunction.Also,afunctioncanbesaidtobestrictlymonotoniconarangeofvalues,andthushaveaninverseonthatrangeofvalue.Forexample,ify=g(x)isstrictlymonotonicontherange[a,b],thenithasaninversex=h(y)ontherange[g(a),g(b)],butwecannotsaytheentirerangeofthefunctionhasaninverse.
Note,sometextbooks[which?]mistakenlystatethataninverseexistsforamonotonicfunction,whentheyreallymeanthataninverseexistsforastrictlymonotonicfunction.
Monotonictransformation[edit]
Thetermmonotonictransformation(ormonotonetransformation)canalsopossiblycausesomeconfusionbecauseitreferstoatransformationbyastrictlyincreasingfunction.Thisisthecaseineconomicswithrespecttotheordinalpropertiesofautilityfunctionbeingpreservedacrossamonotonictransform(seealsomonotonepreferences).[5]Inthiscontext,whatwearecallinga"monotonictransformation"is,moreaccurately,calleda"positivemonotonictransformation",inordertodistinguishitfroma“negativemonotonictransformation,”whichreversestheorderofthenumbers.[6]
Somebasicapplicationsandresults[edit]
Monotonicfunctionwithadensesetofjumpdiscontinuities(severalsectionsshown)
Thefollowingpropertiesaretrueforamonotonicfunction
f
:
R
→
R
{\displaystylef\colon\mathbb{R}\to\mathbb{R}}
:
f
{\displaystylef}
haslimitsfromtherightandfromtheleftateverypointofitsdomain;
f
{\displaystylef}
hasalimitatpositiveornegativeinfinity(
±
∞
{\displaystyle\pm\infty}
)ofeitherarealnumber,
∞
{\displaystyle\infty}
,or
−
∞
{\displaystyle-\infty}
.
f
{\displaystylef}
canonlyhavejumpdiscontinuities;
f
{\displaystylef}
canonlyhavecountablymanydiscontinuitiesinitsdomain.Thediscontinuities,however,donotnecessarilyconsistofisolatedpointsandmayevenbedenseinaninterval(a,b).Forexample,foranysummablesequence
(
a
i
)
(a_{i})
ofpositivenumbersandanyenumeration
(
q
i
)
{\displaystyle(q_{i})}
oftherationalnumbers,themonotonicallyincreasingfunction
f
(
x
)
=
∑
q
i
≤
x
a
i
{\displaystylef(x)=\sum_{q_{i}\leqx}a_{i}}
iscontinuousexactlyateveryirrationalnumber(cf.picture).Itisthecumulativedistributionfunctionofthediscretemeasureontherationalnumbers,where
a
i
{\displaystylea_{i}}
istheweightof
q
i
{\displaystyleq_{i}}
.
Thesepropertiesarethereasonwhymonotonicfunctionsareusefulintechnicalworkinanalysis.Somemorefactsaboutthesefunctionsare:
if
f
{\displaystylef}
isamonotonicfunctiondefinedonaninterval
I
{\displaystyleI}
,then
f
{\displaystylef}
isdifferentiablealmosteverywhereon
I
{\displaystyleI}
;i.e.thesetofnumbers
x
{\displaystylex}
in
I
{\displaystyleI}
suchthat
f
{\displaystylef}
isnotdifferentiablein
x
{\displaystylex}
hasLebesguemeasurezero.Inaddition,thisresultcannotbeimprovedtocountable:seeCantorfunction.
ifthissetiscountable,then
f
{\displaystylef}
isabsolutelycontinuous
if
f
{\displaystylef}
isamonotonicfunctiondefinedonaninterval
[
a
,
b
]
{\displaystyle\left[a,b\right]}
,then
f
{\displaystylef}
isRiemannintegrable.
Animportantapplicationofmonotonicfunctionsisinprobabilitytheory.If
X
{\displaystyleX}
isarandomvariable,itscumulativedistributionfunction
F
X
(
x
)
=
Prob
(
X
≤
x
)
{\displaystyleF_{X}\!\left(x\right)={\text{Prob}}\!\left(X\leqx\right)}
isamonotonicallyincreasingfunction.
Afunctionisunimodalifitismonotonicallyincreasinguptosomepoint(themode)andthenmonotonicallydecreasing.
When
f
{\displaystylef}
isastrictlymonotonicfunction,then
f
{\displaystylef}
isinjectiveonitsdomain,andif
T
{\displaystyleT}
istherangeof
f
{\displaystylef}
,thenthereisaninversefunctionon
T
{\displaystyleT}
for
f
{\displaystylef}
.Incontrast,eachconstantfunctionismonotonic,butnotinjective,[7]andhencecannothaveaninverse.
Intopology[edit]
Amap
f
:
X
→
Y
{\displaystylef:X\toY}
issaidtobemonotoneifeachofitsfibersisconnected;thatis,foreachelement
y
∈
Y
,
{\displaystyley\inY,}
the(possiblyempty)set
f
−
1
(
y
)
{\displaystylef^{-1}(y)}
isaconnectedsubspaceof
X
.
{\displaystyleX.}
Infunctionalanalysis[edit]
Infunctionalanalysisonatopologicalvectorspace
X
{\displaystyleX}
,a(possiblynon-linear)operator
T
:
X
→
X
∗
{\displaystyleT:X\rightarrowX^{*}}
issaidtobeamonotoneoperatorif
(
T
u
−
T
v
,
u
−
v
)
≥
0
∀
u
,
v
∈
X
.
{\displaystyle(Tu-Tv,u-v)\geq0\quad\forallu,v\inX.}
Kachurovskii'stheoremshowsthatconvexfunctionsonBanachspaceshavemonotonicoperatorsastheirderivatives.
Asubset
G
{\displaystyleG}
of
X
×
X
∗
{\displaystyleX\timesX^{*}}
issaidtobeamonotonesetifforeverypair
[
u
1
,
w
1
]
{\displaystyle[u_{1},w_{1}]}
and
[
u
2
,
w
2
]
{\displaystyle[u_{2},w_{2}]}
in
G
{\displaystyleG}
,
(
w
1
−
w
2
,
u
1
−
u
2
)
≥
0.
{\displaystyle(w_{1}-w_{2},u_{1}-u_{2})\geq0.}
G
{\displaystyleG}
issaidtobemaximalmonotoneifitismaximalamongallmonotonesetsinthesenseofsetinclusion.Thegraphofamonotoneoperator
G
(
T
)
{\displaystyleG(T)}
isamonotoneset.Amonotoneoperatorissaidtobemaximalmonotoneifitsgraphisamaximalmonotoneset.
Inordertheory[edit]
Ordertheorydealswitharbitrarypartiallyorderedsetsandpreorderedsetsasageneralizationofrealnumbers.Theabovedefinitionofmonotonicityisrelevantinthesecasesaswell.However,theterms"increasing"and"decreasing"areavoided,sincetheirconventionalpictorialrepresentationdoesnotapplytoordersthatarenottotal.Furthermore,thestrictrelationsareoflittleuseinmanynon-totalordersandhencenoadditionalterminologyisintroducedforthem.
Letting≤denotethepartialorderrelationofanypartiallyorderedset,amonotonefunction,alsocalledisotone,ororder-preserving,satisfiestheproperty
x≤yimpliesf(x)≤f(y),
forallxandyinitsdomain.Thecompositeoftwomonotonemappingsisalsomonotone.
Thedualnotionisoftencalledantitone,anti-monotone,ororder-reversing.Hence,anantitonefunctionfsatisfiestheproperty
x≤yimpliesf(y)≤f(x),
forallxandyinitsdomain.
Aconstantfunctionisbothmonotoneandantitone;conversely,iffisbothmonotoneandantitone,andifthedomainoffisalattice,thenfmustbeconstant.
Monotonefunctionsarecentralinordertheory.Theyappearinmostarticlesonthesubjectandexamplesfromspecialapplicationsarefoundintheseplaces.Somenotablespecialmonotonefunctionsareorderembeddings(functionsforwhichx≤yifandonlyiff(x)≤f(y))andorderisomorphisms(surjectiveorderembeddings).
Inthecontextofsearchalgorithms[edit]
Inthecontextofsearchalgorithmsmonotonicity(alsocalledconsistency)isaconditionappliedtoheuristicfunctions.Aheuristich(n)ismonotonicif,foreverynodenandeverysuccessorn'ofngeneratedbyanyactiona,theestimatedcostofreachingthegoalfromnisnogreaterthanthestepcostofgettington'plustheestimatedcostofreachingthegoalfromn',
h
(
n
)
≤
c
(
n
,
a
,
n
′
)
+
h
(
n
′
)
.
{\displaystyleh(n)\leqc\left(n,a,n'\right)+h\left(n'\right).}
Thisisaformoftriangleinequality,withn,n',andthegoalGnclosestton.Becauseeverymonotonicheuristicisalsoadmissible,monotonicityisastricterrequirementthanadmissibility.SomeheuristicalgorithmssuchasA*canbeprovenoptimalprovidedthattheheuristictheyuseismonotonic.[8]
InBooleanfunctions[edit]
Withthenonmonotonicfunction"ifathenbothbandc",falsenodesappearabovetruenodes.
Hassediagramofthemonotonicfunction"atleasttwoofa,b,chold".Colorsindicatefunctionoutputvalues.
InBooleanalgebra,amonotonicfunctionisonesuchthatforallaiandbiin{0,1},ifa1≤b1,a2≤b2,...,an≤bn(i.e.theCartesianproduct{0,1}nisorderedcoordinatewise),thenf(a1,...,an)≤f(b1,...,bn).Inotherwords,aBooleanfunctionismonotonicif,foreverycombinationofinputs,switchingoneoftheinputsfromfalsetotruecanonlycausetheoutputtoswitchfromfalsetotrueandnotfromtruetofalse.Graphically,thismeansthatann-aryBooleanfunctionismonotonicwhenitsrepresentationasann-cubelabelledwithtruthvalueshasnoupwardedgefromtruetofalse.(ThislabelledHassediagramisthedualofthefunction'slabelledVenndiagram,whichisthemorecommonrepresentationforn≤3.)
ThemonotonicBooleanfunctionsarepreciselythosethatcanbedefinedbyanexpressioncombiningtheinputs(whichmayappearmorethanonce)usingonlytheoperatorsandandor(inparticularnotisforbidden).Forinstance"atleasttwoofa,b,chold"isamonotonicfunctionofa,b,c,sinceitcanbewrittenforinstanceas((aandb)or(aandc)or(bandc)).
ThenumberofsuchfunctionsonnvariablesisknownastheDedekindnumberofn.
Seealso[edit]
Monotonecubicinterpolation
Pseudo-monotoneoperator
Spearman'srankcorrelationcoefficient-measureofmonotonicityinasetofdata
Totalmonotonicity
Cyclicalmonotonicity
Operatormonotonefunction
Notes[edit]
^Clapham,Christopher;Nicholson,James(2014).OxfordConciseDictionaryofMathematics(5th ed.).OxfordUniversityPress.
^abStover,Christopher."MonotonicFunction".WolframMathWorld.Retrieved2018-01-29.
^abcde"Monotonefunction".EncyclopediaofMathematics.Retrieved2018-01-29.
^abSpivak,Michael(1994).Calculus.1572WestGray,#377Houston,Texas77019:PublishorPerish,Inc.p. 192.ISBN 0-914098-89-6.{{citebook}}:CS1maint:location(link)
^SeethesectiononCardinalVersusOrdinalUtilityinSimon&Blume(1994).
^Varian,HalR.(2010).IntermediateMicroeconomics(8th ed.).W.W.Norton&Company.p. 56.ISBN 9780393934243.
^ifitsdomainhasmorethanoneelement
^Conditionsforoptimality:Admissibilityandconsistencypg.94-95(Russell&Norvig2010).
Bibliography[edit]
Bartle,RobertG.(1976).Theelementsofrealanalysis(second ed.).
Grätzer,George(1971).Latticetheory:firstconceptsanddistributivelattices.ISBN 0-7167-0442-0.
Pemberton,Malcolm;Rau,Nicholas(2001).Mathematicsforeconomists:anintroductorytextbook.ManchesterUniversityPress.ISBN 0-7190-3341-1.
Renardy,Michael&Rogers,RobertC.(2004).Anintroductiontopartialdifferentialequations.TextsinAppliedMathematics13(Second ed.).NewYork:Springer-Verlag.p. 356.ISBN 0-387-00444-0.
Riesz,Frigyes&BélaSzőkefalvi-Nagy(1990).FunctionalAnalysis.CourierDoverPublications.ISBN 978-0-486-66289-3.
Russell,StuartJ.;Norvig,Peter(2010).ArtificialIntelligence:AModernApproach(3rd ed.).UpperSaddleRiver,NewJersey:PrenticeHall.ISBN 978-0-13-604259-4.
Simon,CarlP.;Blume,Lawrence(April1994).MathematicsforEconomists(first ed.).ISBN 978-0-393-95733-4.(Definition9.31)
Externallinks[edit]
"Monotonefunction",EncyclopediaofMathematics,EMSPress,2001[1994]
ConvergenceofaMonotonicSequencebyAnikDebnathandThomasRoxlo(TheHarkerSchool),WolframDemonstrationsProject.
Weisstein,EricW."MonotonicFunction".MathWorld.
Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Monotonic_function&oldid=1086222622"
Categories:FunctionalanalysisOrdertheoryRealanalysisTypesoffunctionsHiddencategories:CS1maint:locationArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataAllarticleswithspecificallymarkedweasel-wordedphrasesArticleswithspecificallymarkedweasel-wordedphrasesfromMarch2021
Navigationmenu
Personaltools
NotloggedinTalkContributionsCreateaccountLogin
Namespaces
ArticleTalk
English
Views
ReadEditViewhistory
More
Search
Navigation
MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate
Contribute
HelpLearntoeditCommunityportalRecentchangesUploadfile
Tools
WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem
Print/export
DownloadasPDFPrintableversion
Languages
العربيةAzərbaycancaБългарскиCatalàЧӑвашлаČeštinaDanskDeutschEestiΕλληνικάEspañolEsperantoفارسیFrançais한국어ՀայերենBahasaIndonesiaÍslenskaItalianoעבריתҚазақшаLombardNederlands日本語Oʻzbekcha/ўзбекчаPolskiPortuguêsRomânăРусскийSimpleEnglishSlovenčinaSlovenščinaСрпски/srpskiSrpskohrvatski/српскохрватскиSuomiSvenskaதமிழ்УкраїнськаTiếngViệt文言中文
Editlinks