RA Monotone functions and continuity - Jiří Lebl
文章推薦指數: 80 %
If a function is either increasing or decreasing, we say it is monotone. If it is strictly increasing or strictly decreasing, ...
Skiptomaincontent\(\require{cancel}\newcommand{\avoidbreak}{\postdisplaypenalty=100}
\newcommand{\ann}{\operatorname{ann}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\Orb}{\operatorname{Orb}}
\newcommand{\hol}{\operatorname{hol}}
\newcommand{\aut}{\operatorname{aut}}
\newcommand{\codim}{\operatorname{codim}}
\newcommand{\sing}{\operatorname{sing}}
\newcommand{\esssup}{\operatorname{ess~sup}}
\newcommand{\essran}{\operatorname{essran}}
\newcommand{\innprod}[2]{\langle#1|#2\rangle}
\newcommand{\linnprod}[2]{\langle#1,#2\rangle}
\newcommand{\supp}{\operatorname{supp}}
\newcommand{\Nul}{\operatorname{Nul}}
\newcommand{\Ran}{\operatorname{Ran}}
\newcommand{\sabs}[1]{\lvert{#1}\rvert}
\newcommand{\snorm}[1]{\lVert{#1}\rVert}
\newcommand{\abs}[1]{\left\lvert{#1}\right\rvert}
\newcommand{\norm}[1]{\left\lVert{#1}\right\rVert}
\newcommand{\babs}[1]{\bigl\lvert{#1}\bigr\rvert}
\newcommand{\bnorm}[1]{\bigl\lVert{#1}\bigr\rVert}
\newcommand{\C}{{\mathbb{C}}}
\newcommand{\R}{{\mathbb{R}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\N}{{\mathbb{N}}}
\newcommand{\Q}{{\mathbb{Q}}}
\newcommand{\D}{{\mathbb{D}}}
\newcommand{\F}{{\mathbb{F}}}
\newcommand{\bB}{{\mathbb{B}}}
\newcommand{\bC}{{\mathbb{C}}}
\newcommand{\bR}{{\mathbb{R}}}
\newcommand{\bZ}{{\mathbb{Z}}}
\newcommand{\bN}{{\mathbb{N}}}
\newcommand{\bQ}{{\mathbb{Q}}}
\newcommand{\bD}{{\mathbb{D}}}
\newcommand{\bF}{{\mathbb{F}}}
\newcommand{\bH}{{\mathbb{H}}}
\newcommand{\bO}{{\mathbb{O}}}
\newcommand{\bP}{{\mathbb{P}}}
\newcommand{\bK}{{\mathbb{K}}}
\newcommand{\bV}{{\mathbb{V}}}
\newcommand{\CP}{{\mathbb{CP}}}
\newcommand{\RP}{{\mathbb{RP}}}
\newcommand{\HP}{{\mathbb{HP}}}
\newcommand{\OP}{{\mathbb{OP}}}
\newcommand{\sA}{{\mathcal{A}}}
\newcommand{\sB}{{\mathcal{B}}}
\newcommand{\sC}{{\mathcal{C}}}
\newcommand{\sF}{{\mathcal{F}}}
\newcommand{\sG}{{\mathcal{G}}}
\newcommand{\sH}{{\mathcal{H}}}
\newcommand{\sM}{{\mathcal{M}}}
\newcommand{\sO}{{\mathcal{O}}}
\newcommand{\sP}{{\mathcal{P}}}
\newcommand{\sQ}{{\mathcal{Q}}}
\newcommand{\sR}{{\mathcal{R}}}
\newcommand{\sS}{{\mathcal{S}}}
\newcommand{\sI}{{\mathcal{I}}}
\newcommand{\sL}{{\mathcal{L}}}
\newcommand{\sK}{{\mathcal{K}}}
\newcommand{\sU}{{\mathcal{U}}}
\newcommand{\sV}{{\mathcal{V}}}
\newcommand{\sX}{{\mathcal{X}}}
\newcommand{\sY}{{\mathcal{Y}}}
\newcommand{\sZ}{{\mathcal{Z}}}
\newcommand{\fS}{{\mathfrak{S}}}
\newcommand{\interior}{\operatorname{int}}
\newcommand{\id}{\textit{id}}
\newcommand{\im}{\operatorname{im}}
\newcommand{\rank}{\operatorname{rank}}
\newcommand{\Tor}{\operatorname{Tor}}
\newcommand{\Torsion}{\operatorname{Torsion}}
\newcommand{\Ext}{\operatorname{Ext}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\mapsfrom}{\ensuremath{\text{\reflectbox{$\mapsto$}}}}
\newcommand{\from}{\ensuremath{\leftarrow}}
\newcommand{\dhat}[1]{\hat{\hat{#1}}}
\newcommand{\spn}{\operatorname{span}}
\newcommand{\nicefrac}[2]{{{}^{#1}}\!/\!{{}_{#2}}}
\newcommand{\unitfrac}[3][\!\!]{#1\,\,{{}^{#2}}\!/\!{{}_{#3}}}
\newcommand{\unit}[2][\!\!]{#1\,\,#2}
\newcommand{\noalign}[1]{}
\newcommand{\qed}{\qquad\Box}
\newcommand{\qedhere}{}
\newcommand{\widebar}[1]{\overline{#1}}
\newcommand{\lt}{}
\newcommand{\amp}{&}
\)
FrontMatterColophon
0Introduction
Aboutthisbook
Aboutanalysis
Basicsettheory
1RealNumbers
Basicproperties
Thesetofrealnumbers
Absolutevalueandboundedfunctions
Intervalsandthesizeof\(\R\)
Decimalrepresentationofthereals
2SequencesandSeries
Sequencesandlimits
Factsaboutlimitsofsequences
Limitsuperior,limitinferior,andBolzano–Weierstrass
Cauchysequences
Series
Moreonseries
3ContinuousFunctions
Limitsoffunctions
Continuousfunctions
Min-maxandintermediatevaluetheorems
Uniformcontinuity
Limitsatinfinity
Monotonefunctionsandcontinuity
4TheDerivative
Thederivative
Meanvaluetheorem
Taylor'stheorem
Inversefunctiontheorem
5TheRiemannIntegral
TheRiemannintegral
Propertiesoftheintegral
Fundamentaltheoremofcalculus
Thelogarithmandtheexponential
Improperintegrals
6SequencesofFunctions
Pointwiseanduniformconvergence
Interchangeoflimits
Picard'stheorem
7MetricSpaces
Metricspaces
Openandclosedsets
Sequencesandconvergence
Completenessandcompactness
Continuousfunctions
FixedpointtheoremandPicard'stheoremagain
8SeveralVariablesandPartialDerivatives
Vectorspaces,linearmappings,andconvexity
Analysiswithvectorspaces
Thederivative
Continuityandthederivative
Inverseandimplicitfunctiontheorems
Higherorderderivatives
9One-dimensionalIntegralsinSeveralVariables
Differentiationundertheintegral
Pathintegrals
Pathindependence
10MultivariableIntegral
Riemannintegraloverrectangles
IteratedintegralsandFubinitheorem
Outermeasureandnullsets
ThesetofRiemannintegrablefunctions
Jordanmeasurablesets
Green'stheorem
Changeofvariables
11FunctionsasLimits
Complexnumbers
Swappinglimits
Powerseriesandanalyticfunctions
Thecomplexexponentialandthetrigonometricfunctions
Fundamentaltheoremofalgebra
EquicontinuityandtheArzelà–Ascolitheorem
TheStone–Weierstrasstheorem
Fourierseries
BackMatter
FurtherReading
Index
CreatedwithPreTeXt
Section3.6Monotonefunctionsandcontinuity
Note:1lecture(optional,cansafelybeomittedunlessSection 4.4isalsocovered,requiresSection 3.5)
Definition3.6.1.
Let\(S\subset\R\text{.}\)Wesay\(f\colonS\to\R\)isincreasing(resp.strictlyincreasing)if\(x,y\inS\)with\(x
延伸文章資訊
- 1Monotonically Increasing Function - Video & Lesson Transcript
When a function is increasing on its entire domain or decreasing on its entire domain, we say tha...
- 2monotone function - Wiktionary
(Boolean algebra) A Boolean function with the property that switching any one input variable from...
- 3monotone function in nLab
A function between preordered sets is called monotone if it respects the (pre)ordering. When preo...
- 4Monotonic function - Wikipedia
In mathematics, a monotonic function (or monotone function) is a function between ordered sets th...
- 5Monotonic Function -- from Wolfram MathWorld
A monotonic function is a function which is either entirely nonincreasing or nondecreasing. A fun...