an≤an+1 for all n∈N. ... an≥an+1 for all n∈N. If {an} is increasing or decreasing, then it is called a monotone sequence. The sequence is ...
Skiptomaincontent
Definition\(\PageIndex{1}\)Theorem\(\PageIndex{1}\)-MonotoneConvergenceTheorem.Remark\(\PageIndex{2}\)Example\(\PageIndex{1}\)Example\(\PageIndex{2}\)Example\(\PageIndex{3}\)-Thenumbere.Theorem\(\PageIndex{3}\)-NestedIntervalsTheorem.Definition\(\PageIndex{2}\)Remark\(\PageIndex{4}\)Example\(\PageIndex{4}\)Theorem\(\PageIndex{5}\)Theorem\(\PageIndex{6}\)Theorem\(\PageIndex{7}\)
Definition\(\PageIndex{1}\)
Asequence\(\left\{a_{n}\right\}\)iscalledincreasingif
\[a_{n}\leqa_{n+1}\text{forall}n\in\mathbb{N}.\]
Itiscalleddecreasingif
\[a_{n}\geqa_{n+1}\text{forall}n\in\mathbb{N}.\]
If\(\left\{a_{n}\right\}\)isincreasingordecreasing,thenitiscalledamonotonesequence.
Thesequenceiscalledstrictlyincreasing(resp.strictlydecreasing)if\(a_{n}a_{n+1}\text{forall}n\in\mathbb{N}\).
Itiseasytoshowbyinductionthatif\(\left\{a_{n}\right\}\)isanincreasingsequence,then\(a_{n}\leqa_{m}\)whenever\(n\leqm\).
Theorem\(\PageIndex{1}\)-MonotoneConvergenceTheorem.
Let\(\left\{a_{n}\right\}\)beasequenceofrealnumbers.Thefollowinghold:
If\(\left\{a_{n}\right\}\)isincreasingandboundedabove,thenitisconvergent.
If\(\left\{a_{n}\right\}\)isdecreasingandboundedbelow,thenitisconvergent.
Proof
(a)Let\(\left\{a_{n}\right\}\)beanincreasingsequencethatisboundedabove.Define
\(A=\left\{a_{n}:n\in\mathbb{N}\right\}\).
Then\(A\)isasubsetof\(\mathbb{R}\)thatisnonemptyandboundedaboveand,hence,\(\supA\)exists.Let\(\ell=\supA\)andlet\(\varepsilon>0\).ByProposition1.5.1,thereexists\(N\in\mathbb{N}\)suchthat
\(\ell-\varepsilon2=a_{1}\),thestatementistruefor\(n=1\).Next,suppose\(a_{k}M\text{forall}n\geqN.\]
Inthiscase,wewrite\(\lim_{n\rightarrow\infty}a_{n}=\infty\).Similarly,wesaythat\(\left\{a_{n}\right\}\)divergesto\(-\infty\)andwrite\(\lim_{n\rightarrow\infty}a_{n}=-\infty\)ifforevery\(M\in\mathbb{R}\),thereexists\(N\in\mathbb{N}\)suchthat
\[a_{n}5M\).Then,if\(n\geqN\),wehave
\[a_{n}\geq\frac{n}{5}\geq\frac{N}{5}>M.\]
Thefollowingresultcompletesthedescriptionofthebehaviorofmonotonesequences.
Theorem\(\PageIndex{5}\)
Ifasequence\(\left\{a_{n}\right\}\)isincreasingandnotboundedabove,then
\[\lim_{n\rightarrow\infty}a_{n}=\infty.\]
Similarly,if\(\left\{a_{n}\right\}\)isdecreasingandnotboundedbelow,then
\[\lim_{n\rightarrow\infty}a_{n}=-\infty\]
Proof
Fixanyrealnumber\(M\).Since\(\left\{a_{n}\right\}\)isnotboundedabove,thereexists\(N\in\mathbb{N}\)suchthat\(a_{N}\geqM\).Then
\[a_{n}\geqa_{N}\geqM\text{forall}n\geqN\]
because\(\left\{a_{n}\right\}\)isincreasing.Therefore,\(\lim_{n\rightarrow\infty}a_{n}=\infty\).Theproofforthesecondcaseissimilar.\(\square\)
Theorem\(\PageIndex{6}\)
Let\(\left\{a_{n}\right\}\),\(\left\{b_{n}\right\}\),and\(\left\{c_{n}\right\}\)besequencesofrealnumbersandlet\(k\)beaconstant.Suppose
\[\lim_{n\rightarrow\infty}a_{n}=\infty,\lim_{n\rightarrow\infty}b_{n}=\infty,\text{and}\lim_{n\rightarrow\infty}c_{n}=-\infty\]
Then
\(\lim_{n\rightarrow\infty}\left(a_{n}+b_{n}\right)=\infty\);
\(\lim_{n\rightarrow\infty}\left(a_{n}b_{n}\right)=\infty\);
\(\lim_{n\rightarrow\infty}\left(a_{n}c_{n}\right)=-\infty\);
\(\lim_{n\rightarrow\infty}ka_{n}=\infty\)if\(k>0\),and\(\lim_{n\rightarrow\infty}ka_{n}=-\infty\)if\(k<0\);
\(\lim_{n\rightarrow\infty}\frac{1}{a_{n}}=0\).(Hereweassume\(a_{n}\neq0\)forall\(n\).)
Proof
Weprovideproofsfor(a)and(e)andleavetheothersasexercises.
(a)Fixany\(M\in\mathbb{R}\).Since\(\lim_{n\rightarrow\infty}a_{n}=\infty\),thereexists\(N_{1}\in\mathbb{N}\)suchthat
\[a_{n}\geq\frac{M}{2}\text{forall}n\geqN_{1}.\]
Similarly,thereexists\(N_{2}\in\mathbb{N}\)suchthat
\[b_{n}\geq\frac{M}{2}\text{forall}n\geqN_{1}\]
Let\(N=\max\left\{N_{1},N_{2}\right\}\).Thenitisclearthat
\[a_{n}+b_{n}\geqM\text{forall}n\geqN.\]
Thisimplies(a).
(e)Forany\(\varepsilon>0\),let\(M=\frac{1}{\varepsilon}\).Since\(\lim_{n\rightarrow\infty}a_{n}=\infty\),thereexists\(N\in\mathbb{N}\)suchthat
\[a_{n}>\frac{1}{\varepsilon}\text{forall}n\geqN\]
Thisimpliesthatfor\(n\geqN\),
\[\left|\frac{1}{a_{n}}-0\right|=\frac{1}{a_{n}}0\).
\(a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{b}{a_{n}}\right),b>0\).
Answer
Addtextshere.Donotdeletethistextfirst.
Exercise\(\PageIndex{3}\)
Provethateachofthefollowingsequencesisconvergentandfinditslimit.
\(\sqrt{2};\sqrt{2\sqrt{2}};\sqrt{2\sqrt{2\sqrt{2}}};\cdots\)
\(1/2;\frac{1}{2+1/2};\frac{1}{2+\frac{1}{2+1/2}};\cdots\)
Answer
Addtextshere.Donotdeletethistextfirst.
Exercise\(\PageIndex{4}\)
Provethatthefollowingsequenceisconvergent:
\(a_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!},n\in\mathbb{N}\).
Answer
Addtextshere.Donotdeletethistextfirst.
Exercise\(\PageIndex{5}\)
Let\(a\)and\(b\)betwopositiverealnumberswith\(a