Metabolic Processes During Seed Germination - IntechOpen
文章推薦指數: 80 %
Physiological and biochemical changes followed by morphological changes during germination are strongly related to seedling survival rate ... Home>Books>AdvancesinSeedBiologyOpenaccesspeer-reviewedchapterMetabolicProcessesDuringSeedGerminationWrittenByAwatifS.AliandAlaaeldinA.ElozeiriSubmitted:March20th,2017Reviewed:August21st,2017Published:December6th,2017DOI:10.5772/intechopen.70653DOWNLOADFORFREEShareCiteCitethischapterTherearetwowaystocitethischapter:1.ChoosecitationstyleSelectstyleVancouverAPAHarvardIEEEMLAChicagoPlaceholderCopytoclipboard2.ChoosecitationstyleSelectformatBibtexRISDownloadcitationIntechOpenSeedBiologyEditedbyJoseCarlosJimenez-LopezFromtheEditedVolumeSeedBiologyEditedbyJoseC.Jimenez-LopezBookDetailsOrderPrintChaptermetricsoverview6,242ChapterDownloadsViewFullMetricsDOWNLOADFORFREEShareCiteCitethischapterTherearetwowaystocitethischapter:1.ChoosecitationstyleSelectstyleVancouverAPAHarvardIEEEMLAChicagoPlaceholderCopytoclipboard2.ChoosecitationstyleSelectformatBibtexRISDownloadcitationImpactofthischapterIntechOpenDownloads6,242TotalChapterDownloadsonintechopen.comCitationsCitations29CitationsAdvertisementAdvertisementAbstractSeedgerminationiscrucialstageinplantdevelopmentandcanbeconsideredasadeterminantforplantproductivity.Physiologicalandbiochemicalchangesfollowedbymorphologicalchangesduringgerminationarestronglyrelatedtoseedlingsurvivalrateandvegetativegrowthwhichconsequentlyaffectyieldandquality.Thisstudyisaimedtofocusonproceedingofthemostvitalmetabolicprocessesnamelyreservemobilization,phytohormonalregulation,glyoxylatecycleandrespirationprocessundereitherstressfulornon-stressfulconditionsthatmaybeledtosuggestandconductthemoresuccessfulexperimentalimprovements.Seedimbibitiontriggeredtheactivationofvariousmetabolicprocessessuchassynthesisofhydrolyticenzymeswhichresultedinhydrolysisofreservefoodintosimpleavailableformforembryouptake.Abioticstressespotentiallyaffectseedgerminationandseedlingestablishmentthroughvariousfactors,suchasareductioninwateravailability,changesinthemobilizationofstoredreserves,hormonalbalancealterationandaffectingthestructuralorganizationofproteins.Recentstrategiesforimprovingseedqualityinvolvedclassicalgenetic,molecularbiologyandinvigorationtreatmentsknownasprimingtreatments.H2O2accumulationandassociatedoxidativedamagestogetherwithadeclineinantioxidantmechanismscanberegardedasasourceofstressthatmaysuppressgermination.Seedprimingwasaimedprimarilytocontrolseedhydrationbyloweringexternalwaterpotential,orshorteningthehydrationperiod.KeywordsreservemobilizationproteolysisglyoxylatecyclephyticacidseedprimingstresstolerancemechanismsAuthorInformationShow+AwatifS.AliBotanyDepartment,FacultyofScience,KafrElsheikhUniversity,KafrElsheikh,EgyptAlaaeldinA.Elozeiri*EnvironmentalEngineeringDepartment,ZewailCityofScienceandTechnology,Cairo,Egypt*Addressallcorrespondenceto:awatifali95@yahoo.com1.IntroductionSeedgerminationisvitalstageinplantdevelopmentandcanbeconsideredasadeterminantforplantproductivity.Itbeginsbywaterimbibition,mobilizationoffoodreserve,proteinsynthesisandconsequenceradicleprotrusion[1].Tosustainagoodseedlingdevelopment,seedstoresafoodreservemainlyasproteins,lipidsandcarbohydrates[2].Proteinandoilbodiesarethemajorreserveinoilseedwhichrepresentasourceforeachofenergy,carbon,andnitrogenduringseedlingestablishment[3].Becausethephysiologyofreservemobilizationduringgerminationandpost-germinationeventsisstillpoorlyunderstood,extensivestudiesmustbeperformedtoknowthemetabolicmechanismsofreservefoodmobilizationprovidinginsightsintotheabilitytousesuchseedsasplantingmaterial[4].Enzymatichydrolysisofprotein,lipidandcarbohydrate,andtransportationofmetabolitesisdependentmainlyonwateravailability[5].Physiologicalandbiochemicalchangesfollowedbymorphologicalchangesduringgerminationarestronglyrelatedtoseedlingsurvivalrateandvegetativegrowthwhichaffectyieldandquality.Foodreserveofstarchandproteinaremainlystoredintheendosperm.Ingeneral,germinationprocesscanbedistinguishedintothreephases:phaseI,rapidwaterimbibitionbyseed;phaseII,reactivationofmetabolism;andphaseIII,radicleprotrusion[6].ThemostcriticalphaseisphaseIIwhereas,theessencephysiologicalandbiochemicalprocessessuchashydrolysis,macromoleculesbiosynthesis,respiration,subcellularstructures,andcellelongationarereactivatedresultingininitiationofgermination[7].Waterimbibitionbyreservesubstancesingerminatingwheatseedstimulatestheembryotoproducephytohormonesmainlygibberellicacid(GA)whichcandiffusetoaleuronelayerandinitiateasignalingcascaderesultinginthesynthesisofα-amylasesandotherhydrolyticenzymes.Then,hydrolyticenzymessecreteintotheendospermandhydrolyzedfoodreserve[8,9].Germinationisconsideredaresponseincludesbidirectionalinteractionsbetweentheembryoandendospermsincetheendospermcansecretesignalstocontrolembryogrowth[10].Previousstudieswereinvestigatedtheactivityofsomekeyenzymesinglycolysis,pentosephosphatepathway(PPP),thetricarboxylicacidcycle(TCAcycle),andaminoacidmetabolismduringgermination[11].Seedgerminationisparticularlyvulnerabletoenvironmentalstressencounteredconditions,specificallysaltandwaterwhicharewidespreadproblemaroundtheworld[12].Highsaltanddroughttoleranceseedsmightbeshowedrapidgerminationresultinginagoodseedlingestablishmentandhenceexpectedtomaintainhighyieldproductivity[13].Waterandsaltstressconditionsaffectseedgerminationwithreducinggerminationrateanddelayintheinitiationofgermination[14].Underwaterstress,enzymesactivitysuchasα-amylaseinCicerarietinumcotyledons[15]orα-andβ-amylaseinMedicagosativagerminatingseeds[16]werereduced.Incontrast,waterstressconditionsledtoanincreaseintheactivityofα-amylaseinHordeumvulgareseedlings[17],β-amylaseinCucumissativuscotyledons[18],cytosolicglyceraldehyde-3-phosphatedehydrogenaseinCraterostigmaplantagineumplants[19]andproteaseinOryzasativaseedlings[20].Saltstresscausesiontoxicity,osmoticstressandreactiveoxygenspecies(ROS)stress[21].ROSreactswithcellmacromolecules[22]andlipids[23],anddisruptdiversephysiologicalandbiochemicalprocesses,suchashormonalimbalanceandreduceduseofreserves[24].PlantsdevelopROS-scavengingmechanismsincludeenzymaticandnon-enzymaticantioxidantsystems[25]thatprotectplantsagainstoxidativedamage.Therefore,improvementtheactivityofantioxidantenzymesinplantsorgansisnecessaryforincreasingplant’ssalttolerance.Speciesandvarieties/cultivarsvariedintheirabilityforsalttolerancemechanism.Comparingwithadultplant,themechanismsofstresstoleranceingerminatingphasearepoorlyinterpretedandmightberelatedtoaseriesoffactorsthatareinherenttothespeciesandenvironment[26,27].Phytohormoneshaveessentialroleininducingplantacclimatizationtochangeinenvironmentalconditionsbymediatinggrowth,development,source/sinktransitions,andnutrientallocation[28].Phytohormonesareconsideredthemostimportantendogenoussubstancesformodulatingphysiologicalandmolecularresponses[28].Theyincludeauxin(IAA),cytokinins(CKs),abscisicacid(ABA),ethylene(ET),gibberellins(GAs),salicylicacid(SA),brassinosteroids(BRs),andjasmonates(JAs).Thestrigolactone(SL)arerelativelynewphytohormones.GeneticallyandphysiologicalstudieshavebeendemonstratedtheeffectiverolesoftheplanthormonesABAandGAsinregulationofdormancyandgermination[29].Tocounteracttheadverseeffectsofabioticstress,seedprimingmethodshavebeenappliedtoimprovegermination,uniformity,improveseedlingestablishmentandstimulatevegetativegrowthinmorefieldcrops[30,31].Wheatseedswereprimingtoincreasegerminationcharacteristicsandstresstolerance.Asseedsimbibewater,metabolicprocessesinitiatewithanincreaseinrespirationrate[7].Earlydevelopmentalstagesofseedlingrequirefuelingenergybeforeitbecomesautotrophic[32].Seedsstoremineralnutrientsassucroseoraminoacidswhicharesynthesizedintostarchorproteinsduringdevelopmenttobeusedinearlyseedlingemergence.Phosphorusistakenupbyplantsasphosphateandtranslocatetodevelopedseedswhereitisstoredinphyticacidformmainly(about75%).Advertisement2.TheroleofhydrolyticenzymesinseedgerminationOnseedhydration,separateintercellularbodiesofseedstoredcarbohydrates,proteins,lipidandphosphateactasenergysourceandcarbonskeleton[33].Seedimbibitiontriggeredmanymetabolicprocessessuchasactivationorfreshlysynthesisofhydrolyticenzymeswhichresultedinhydrolysisofstoredstarch,lipid,proteinhemicellulose,polyphosphatesandotherstoragematerialsintosimpleavailableformforembryouptake.Also,consumptionofanelevatedlevelofoxygenmaybeinducedactivation/hydrationofmitochondrialenzymes,involvedintheKrebscycleandelectrontransportchain[34,35].2.1.HydrolysisofstorageseedproteinsProteolyticenzymeshavethemainroleinusingstoredproteininmetabolismofgerminatingseedswhichproceedthroughmanystages[36].AccordingtoGepstinandIlan[37],proteolyticactivityingerminatingbeansincreasedduringthefirst7 dayswhichpartiallydependentontheembryonicaxis.Proteasesandpeptidaseshavebeendetectedinmanyseedsduringgerminationwhereas;plantproteaseandamylaseinhibitorswhichareproteinaceousinnaturearebeingdisappeared[38].Antitrypticandantichymotrypticactivitieswereobservedtobemarkedlyreducedintheendospermoffingermilletongerminationwhichmightbeattributedtotheproteolyticactivityinhydrolysisoftheinhibitoryproteins[39].Hydrolysisofstoredproteinsproducedfreeaminoacids,whichsupportproteinsynthesisinendospermandembryoandsoproceedingofgerminationprocess[40].Schlerethet al.[41]recordedaninitiallittledecreaseinfreeaminoacidsatthebeginningofvetchseedsimbibitionwhichisattributedtoleakagefromtheaxis,butremainwithoutchangeduringlategerminationstage.AdisulfideproteometechniquewasdevelopedbyYanoet al.[42]tovisualizeredoxchangesinproteins.Thistechniquewasusedtoanalyzericebranresultinginidentificationofembryo-specificprotein2(ESP2),dienelactonehydrolase,putativeglobulin,andglobulin-1S-likeproteinasputativetargetofthioredoxin,whichsupportthehypothesisthatthioredoxinactivatescysteineproteasewithaconcurrentunfoldingofitssubstrateduringgermination[43].Inbuckwheatseeds,themainstorageproteinconstituentabout16%oftotalseedproteinisthe13Sglobulinwithmolecularmassofabout300kDaandconsistsofacidandbasicsubunitswithmolecularmassesrangingfrom57.5to23.5 kDa[44].Duringseedgermination,13Sglobulinishydrolyzedbyproteolyticenzymesthroughstagesandtheproductsareusedbythegrowingseedling.Thefirststageofthe13Sglobulindegradationresultedfromalimitedproteolysisactivityofmetalloproteinasewiththecleavageofabout1.5%ofpeptidebonds.Thisstageproceedsduringthefirst3 daysofgermination.Ittakesplaceduringthefirst3 daysofgermination[45].Metalloproteinaseactivityiscontrolledbyaproteinaceousinhibitor(Mr—10 kDa),presentindrybuckwheatseedsinacomplexwiththeenzymewhichdissociatedbybivalentcationsliberatedfromphytinhydrolysisprocess.Phytinispresentinbuckwheatseedsinsufficientamountintheformofgloboidsdisposedinproteinbodies[46].Duringthesecondstageof13Sglobulindegradation;theproductsofmetalloproteinaseproteinactivityhydrolyzedintosmallpeptidesandaminoacidsatacidpH(5.6)bycysteineproteinaseandcarboxypeptidasewhichappearingerminatingseeds[47].Itwasclearthatcysteineproteinaseisabletohydrolyzeonlythemodifiedl3Sglobulinbutnotthenative.Theroleofcarboxypeptidaseistofacilitatetheflowofstorageproteinhydrolysisandworksincooperationwithcysteineproteinase.AtlateststagewhenpHbecomesmoreacidic(5.0)inthevacuoles,asparticproteinasewhichispresentindryseedsisinvolvedintothecourseofhydrolysisproteinbodies.2.2.HydrolysisofstorageseedstarchCarbohydratesrepresentthemoststoragefoodconstituentincerealgrains,whereasitcontainsabout70–80%starch,about15%protein,lessthan5%lipids,mineralsandvitamins.Incereals,mosthydrolysisenzymesareproducedinthealeuroneorscutelluminresponsetogerminationsignals.Severalmodifiedseedsystemswereusedtodetecttheinductionprocessandidentifypotentialfactorscontrollingenzymeinductioninabsenceoftheembryo[48].ChrispeelsandVarner[49]observedthatisolatedaleuronefailedtosynthesizeα-amylaseinamannerquantitativelysimilartodistalhalfseedsledtocorrectionbyaddingcalciumtothemedium.Theroleofcalciummightbeexpectedtoinvolveamylasestability,andtohaveamuchmorecomplexinvolvementinregulatingenzymeactivities[50].Becauseofde novoamylasesynthesisduringseedgerminationtostimulatethestoredstarchmobilizationforprovidingyoungplanttillphotosynthesiswillbeinitiate,amylasehasbeenshowedhighactivity[51].Paryset al.[52]showedthattheamylaseactivityisregulatedbytheconcentrationofreducingsugarsin vivoinbothcotyledonsandaxis.Atthetime,theamylaseactivityinthecotyledonsincreasedgraduallyandreachedamaximumonthe5thdayofgerminationprocess,whilethestarchdecreasedandsolublesugarsincreased[53].Manystudieswhichconcernedwithstudyingtheessentialityofα-amylaseactivityduringseedgerminationunderdroughtstressandcouldbesummarizedasfollows;thepromotionofdroughtstressedgerminatingseedsisaresultofhighα-amylaseactivitydirectlybut,itmightberelatedtoadaptivestrategytowaterdeficitsinceitsactivityisrequiredforsolutesaccumulationanddecreaseosmoticpotential[54,55].Inaddition,α-amylasesynthesisinhibitionmightbenotamechanismbywhichdroughtpreventsthegerminationofAgropyrondesertorumseeds[54].GAscanalleviatethedroughtstress-causedinhibitionofseedgerminationthroughregulationofα-amylase[19].2.3.HydrolysisofstorageseedlipidsGenerallyoilseedscomposedoftwoparts,thekernelwhichismainpartandtheseedcoveringthatenclosedthekernelandcalledthehuskortegument.Thekernelcomprisedtwopartswhicharetheembryoandtheendosperm.Lipaseactivityisinvestigatedduringseedgerminationwhereitismaximumvalue[56,57].Triacylglycerolsisstoredinoleosomesandcompriseinrangefrom20to50%ofdry.Asgerminationproceeds,triacylglycerolsarehydrolyzedtoproduceenergywhichrequiredforthesynthesisofsugars,aminoacids(mainlyasparagine,aspartate,glutamineandglutamate)andcarbonchainsrequiredforembryonicgrowth[58].Lipidlevelandlipaseactivitywerestudiedinvariousgerminatingseeds.Itwasshowedthatβ-oxidationtakesplace4 daysaftergerminationofCastorbeenseeds[59].Themajorhydrolyticenzymesconcernedwiththelipidmetabolismduringgerminationarethelipaseswhichcatalyzethehydrolysisofestercarboxylatebondsandreleasingfattyacidsandorganicalcohols[60,61]andthereversereaction(esterification)orevenvarioustransesterificationreactions[62].Theabilityoflipasestocatalyzethesereactionswithgreatefficiency,stabilityandversatilitymakestheseenzymeshighlyattractivefromacommercialpointofview.Villeneuve[63]andothersclassifiedlipasesspecificitiesintothreemaingroups;the1stgroupissubstratespecificityinwhichglycerolestersrepresentthenaturalsubstrates,the2ndgroupiscalledregioselectiveandinvolvesthesubgroupsnon-specificlipasesthathydrolyzethetriacylglycerolsintofattyacidsandglycerolinarandomwaywithproductionofmono-anddiacylglycerolsasintermediateproducts(Figure 1);specific1.3lipaseswhichcatalyzethehydrolysisatC1andC3glycerolbondsintriacylglycerolswithliberatingoffattyacidsandunstableintermediates2-monoacylglycerolsand1.2-or2.3-diacylglycerolsandspecificorselectivetypefattyacidthathydrolyzetheesterbondofaspecificfattyacidoraspecificgroupoffattyacidsatanypositionoftriacylglycerol.The3rdgroupenantioselectivecouldidentifyenantiomersinaracemicmixture.Theenantiospecificitiesoflipasesdependonthetypeofsubstrate[64].Figure 1.Regioselective:non-specificand1,3specificlipasescatalyzethehydrolysisoftriglyceridesindifferentmannerswiththeproductionoffattyacids.Theinductionoflipaseactivityduringgerminationmightbedependentonfactorsfromembryo[65].EarlystudyofShoshiandReevers[66]showedthepresenceoftwolipasesintheendospermofCastorbeenseed,acidlipaseindryseedandalkalinelipaseduringgermination.Ontheotherhand,storagetissuesofalltheoilseedsexceptCastorbeancontainedonlylipaseactivitywhichincreasedduringgermination[67].Becauseofsucroseisthesubstrateforlipidbiosynthesisindevelopingseedandtheendproductoflipiddegradation,itmightbeprimarilyconsideredasregulatoryfactorinstudyingthemechanismsoflipidmetabolism[58,68].Inaddition,asparagineandnitrateareconsideredregulatoryfactorsinlipidmetabolismoflupine[69].Inlupingerminatingseeds,thelevelofasparaginecanreach30%ofdrymatter,anditisamaintransportformofnitrogenfromsourcetosinktissues[70].Boreket al.[71]reportedthatasparaginecontrolsthemetabolismofcarbohydrateasitcausedasignificantdecreaseinsolublesugarsandincreaseinstarchinorgansofgerminatinglupinseed.Incontrast,nitrateisnotafavorablesourceofnitrogeninproteinmetabolisminlupinseeds[72]andratherdoesnotinfluencethecarbohydratemetabolism[71].NitratesimilarlyasNsucrose,isregardedasafactorwhichcanregulateplantmetabolismbychangesintheexpressionofsomegenes[73].Storagelipidmobilizationingerminatingseedsbeginswithhydrolysisoftriacylglycerolsinoleosomesbylipasesintofreefattyacidsandglycerol.Thenfattyacidsundergoβ-oxidationinperoxisomes.Next,glyoxylatecyclewillproceedpartiallyintheperoxisomeandpartiallyinthecytoplasm.Threeofthefiveenzymesoftheglyoxylatecycle(citratesynthase,isocitratelyaseandmalatesynthase)arelocatedinperoxisomes,whiletwootherenzymes(aconitaseandmalatedehydrogenase)operateinthecytoplasm[74].SuccinatetransportedfromperoxisometomitochondriaandhereisconvertedtomalateviatheKrebscycle.Malateinturn,aftertransporttothecytoplasm,isconvertedtooxaloacetate.Finally,gluconeogenesisandthesynthesisofsugarsaretheprocesseswhichareaformofcarbontransportespeciallyingerminatingseedsproceed[58,75].2.4.HydrolysisofphyticacidduringseedgerminationThegreateststorageformoftotalphosphorus(about50–80%)isphyticacid(C6H18O24P6)andalsoknownasinositolhexophosphate(IP6)inlegumesandcerealsseeds[76].Phyticisregardedasantinutrientbecauseithastheabilitytoformcomplexeswithproteinsandbindwithcations(especiallyFe,Ca,K,Mn,Mg,Zn)viaionicassociationtoformamixedsaltcalledphytinorphytatewiththereductionoftheirdigestiveavailability[77].Ontheotherhand,phytatemayplayanimportantroleasanantioxidantbyformingironcomplexthatcauseadecreaseinfreeradicalgenerationandtheperoxidationofmembranes,andmayalsoactasananticarcinogen,providingprotectionagainstcoloncancer[78].Becauseofitwasregardedasantioxidant,anticarcinogenorvitaminlikesubstance,itisessentialtomeasureandmanipulatephytatecontentinfoodgrainssuchasbeans[79,80].Oneofthemajorbreedingobjectivesisthedevelopmentofcropcultivarswithlowseedphytincontent.Itwasfoundthattheincreaseinmyo-inositolandreducedamountsofmyo-inositolphosphateintermediatesintheseedsofmaizemutantswithaphenotypeofreducedphyticacidhadalittleeffectonplantgrowthanddevelopment[81].Thesefindingsmightsuggestthatahighlevelofstoredphytateisnotnecessaryforseedviabilityandgerminationorseedlingsgrowth.Phytinismainlystoredinproteinbodiesinseedscalledgloboidsinthealeuronelayerandscutellumcellsofmostgrains.Phyticacidhasastrongabilitytochelatemultivalentmetalions,speciallyzinc,calcium,ironandaswithproteinresidue.Seedphytatecontentdependmainlyontheenvironmentalmainlyplantphosphorusfertilization[82].Ithasbeenshowntheimportantgeneticvariabilityinthephytatecontentofbeansanditappearstobeatraitcontrolledbyseveralgenes[83].Also,acorrelationbetweenphytateandproteincontentswasfound[84],sotheproteincontentofgrainscanbeconsideredanotherfactorthatregulatesphytatecontent.Phytiningerminatingseedsishydrolyzedbyanacidphosphataseenzymecalledphytase[85],withreleasingofphosphate,cations,andinositolwhichareutilizedbytheseedlings.ItwasfoundlittlechangesinextractiblePiinhazelseedsduringchillingaccompaniedwithIP6mobilizationthatmightbesuggestedtherapidconversionofPiintoorganicform[86].Theseresultswerediscussedasevidenceofactivemetabolismingerminatingseed[87].Inagreement,phytaseisstronglyandcompetitivelyinhibitedbyPi,whilethedecreaseinphytaseactivitycoincidedwithmaximalIP6turnover[88].Itwasfoundthatabout87%ofIP6isdigestedduringthefirst6 daysofgermination[89].Inthisrespect,Ogawaet al.[90]postulatedthattheearlyaxiferousIP6digestionisessentialformetabolicactivityoftherestingtissueviasupplyingPiandmineralsforphysiologicalandmetabolicrequirements,forexample,enzymesofstarchmetabolism.Inaddition,IP6relatedcompoundssuchaspyrophosphate-containinginositolphosphates(PP-IP)playapotentialroleinprovidingPiforATPsynthesisduringtheearlystagesofgerminationbeforecompletedependenceonaerobicmitochondrialrespirationthemainlysourceofATPproduction[91].Instressedseeds,manyvitalprocessessuchasgermination,growth,respirationandotherrelatedprocessesareaffectedwhichconsequentlycantriggerothereffectsonmetabolicactivitiesparticularlytheenzymesofphosphatemetabolismthatplayanimportantroleingerminationandseeddevelopment[92].Phosphatemetabolismisoneofnegativelyaffectedprocessesunderdifferentstressfulconditions[93].Understressfulconditions,therestrictionofgrowthandphosphorusavailabilityresultinginenhancementtheactivityofphosphatasestoproducePibyhydrolysistheinsolublephosphateformthatmodulatemechanismoffreephosphateuptake.Inagreement,OlmosandHellin[94]reportedthatacidphosphatasesactivityincreasedtosustainPilevelwhichenablesittobeco-transportedwithH+downaprotonmotiveforcegradient.Advertisement3.EffectofabioticstressonmetabolicactivitiesduringseedgerminationAbioticstressesincludingsalt,drought,heavymetals,pollutants,heat,etc.,potentiallyaffectseedgerminationandseedlinggrowth.Dependingonthestressintensityandgeneticbackground,germinationisdelayedorsuppressed.Plantshavedevelopeduniquestrategiesincludingatightregulationofgerminationensuringspeciessurvival[95].ItwaswellknownthatstressexposurewouldproduceearlysignalssuchaschangeinintracellularCa2+,secondarysignalingmoleculessuchasinositolphosphateandROSaswellasactivationofkinasecascades.Seedimbibitiontriggersmanybiochemicalandcellularprocessesassociatedwithgerminationinvolvethereactivationofmetabolism,theresumptionofcellularrespirationandthebiogenesisofmitochondria,thetranslationand/ordegradationofstoredmRNAs,DNArepair,thetranscriptionandtranslationofnewmRNAs,andtheonsetofreservemobilization[7,96].TheseprocessesarefollowedbyROS(mostlyH2O2)accumulationasaresultofapronouncedincreaseintheintracellularandextracellularproductionduringearlystages[97,98].ROSfunctionascellularmessengersortoxicmoleculesonseedhydration[99].ROScausedseeddamageaccompaniedwithalossofseedvigorandasarepercussionofaging[100].ThehighlyactivityofrespirationduringgerminationresultsinsuperoxideanionproductionduringelectronleakagefromthemitochondrialelectrontransportchainfollowedbydismutationtoH2O2.OthersourcesofROSareNADPHoxidasesoftheplasmamembrane,extracellularperoxidases,β-oxidationpathwayinglyoxysomes[97].H2O2isalong-livedROSthatcandiffuseeasilythroughmembranesandthatcanreachtargetsfarfromproductionsites,andisrecognizedasanimportantsignalingmolecule[101].H2O2isconsideredasstrongoxidizingagent,itcouldinteractwithmostbiomoleculesresultinginoxidativestressthatcausescellulardamage.Itcauseslipidperoxidationwhichinturnaffectspolyunsaturatedfattyacids(PUFAs)foundinmembranesorreservelipids.Also,H2O2causeoxidationofnucleicacids(DNA,RNA)andproteins[97].InductionofDNAoxidationbyH2O2resultedintheaccumulationof7,8-dihydro-8-oxoguanine(8-oxo-dG),whichhasbeenshowntocausetheaccumulationofdouble-strandbreaksingenomeanddeleteriouseffectsoncellviability[102].DNAoxidationbyROSisconsideredamainsourceofDNAdamageduringseedstorageandgermination.KongandLin[103]haveshownthatmRNAismuchmoresensitivetooxidativedamagethanDNA,mainlyduetoitscellularlocalization,singlestrandedstructureandlackofrepairmechanisms.GuanineisthemostfrequentlyoxidizedbaseinRNAleadstotheaccumulationof8-hydroxyguanosine(8-OHG).OxidativedamagetomRNAresultsintheinhibitionofproteinsynthesisandinproteindegradation[104].OxidationofproteinbyROSresultinalterationofproteinfunctionsduetoenzymaticandbindingpropertiesmodifications[105].H2O2accumulationandassociatedoxidativedamagestogetherwithadeclineinantioxidantmechanismscanberegardedasasourceofstressthatmaysuppressgermination.Ontheotherhand,Barba-Espinet al.[106]reportedthattheselectiveoxidationofproteinsandmRNAscanactasapositiveregulatorofseedgermination.UsingofcalciumsensorscalledCa2+bindingproteinsrevealedanincreaseinintracellularcalciumconcentrationunderabiotic-stressconditions[107].Thisisaccompaniedwithenhancementofcalcium-dependentproteinkinases(CDPKs),calcium/calmodulin-dependentproteinkinases(CCaMKs)orphosphataseswhichstimulatethephosphorylation/ordephosphorylationofspecifictranscriptionfactors,resultinginanincreaseofstress-responsivegenesexpression[108].However,activatedCa2+sensorsregulatestress-responsivegeneseitherbybindingtocis-elementsinthepromotersorbyinteractingwithDNA-bindingproteinsofgenesthatledtogeneactivationorsuppression.Stressed-germinatingwheatseedsdevelopapowerfulregulatormechanisminresponsetostresseswhichiscalreticulin-likeprotein(M16andM13)andabundantCa2+-bindingproteinpredominantlylocatedintheendoplasmicreticulum(ER)ofhigherplants[109].Itsexpressiontrendwasmainlyup-regulated,especiallyinthelastperiodofgerminationwhichhintsthatwheatseedmayencounterstressinlategermination[110].Anotherregulatormechanismwithpeptidyl-prolylcis-transisomeraseactivitywhichinvolvedinsignaltransduction,cellapoptosis,andproteinfoldingcalledcyclophilin(M51)wasdetectedinstressedgerminatingwheatseeds[111].Becauseofthecellularstructureisnotcompleteinearlygermination,M51increasedslowlyinfirstthreegerminationstagesbutincreasedsharplyinthelaststage[109].Oneofthemosteffectivefactorsonseedimbibitionandgerminationisthetemperature.Itaffectswateruptakeandreactivationofmetabolicprocesses[7].Manyphysiological,biochemicalandmoleculardisturbancewilloccurwithtemperaturedeviationawayfromoptimaltosustaincellularhomeostasis[112].Advertisement4.TheroleofphytohormonesduringgerminationPlantsarecharacterizedbyproducingvarioustypesofgrowthregulatorsthatdifferedintheirchemicalstructureandphysiologicalaction.Theyincludeauxins,cytokinins(CK),gibberellins(GA),abscisicacid(ABA),ethylene(ET),salicylicacid(SA),jasmonates(JA),brassinosteroids(BR)andstrigolactones.EachofABA,SA,JAandETisfoundtoplayanessentialroleinmediatingplantdefenseresponseagainststresses[113].Duringtheearlyphaseofseedgermination,adecreaseinJAandSAcontentsandanincreasedlevelofauxinswererecordedinArabidopsisseeds[114].BothJAandSAwereshowntoactasnegativeregulatorsofseedgermination[115].AuxinsareconsideredtoberegulatorsoftheseedgerminationprocessinacrosstalkwithGAs,ABA,andET[116].ThebrassinosteroidssignalcouldstimulategerminationbydecreasingthesensitivitytoABA[117].Avarietyofcellularprocessesinplantsareundercontrolofphytohormoneswhichplaykeyrolesandcoordinatevarioussignaltransductionpathwaysduringabiotic-stressresponse[118].SeedimbibitionsresultedinanactivationofGAbiosynthesisandresponsepathwayswiththeproductionofthebioactiveGAs.Then,GAsstimulatedthegenesencodingforenzymessuchasendo-β-1,3glucanase[119],β-1,4mannanendohydrolase[120]whichhydrolyzetheendospermandalleviatetheinhibitoryeffectsofABAonembryogrowthpotential[121].TheseresultsareindicatedtheantagonisticrelationbetweeneachofABAandGAwhichinterpretthepresenceofhighGAandlowABAlevelsinseedsunderfavorableenvironmentalconditionsandareverserationunderunfavorableconditions.Thus,thecrosstalkrelationbetweenseeddormancyandgerminationisbalancedbyGA-ABAration,akeymechanismforcopeearlyabiotic-stressconditions.ABAinhibitswateruptakebypreventingcellwalllooseningoftheembryoandtherebyreducesembryogrowthpotential[122].GAsareinvolvedindirectenhancementthegrowthoftheembryoduringlatephase[123].GAsrepressivetheABAeffectduringtheearlyandthelatephasesofgerminationthroughstimulationofgenesexpressionencodingcellwalllooseningthatresultinremodelingenzymessuchasα-expansinsinearlyphaseofgermination.LightandcoldacttogethertobreakdormancyofimbibedseedsandtopromoteseedgerminationbyincreasingGAslevels.ArapiddecreaseofABAendogenouscontentduringPhaseIIisoneofmanyfactorsthatinfluencethesuccessfulcompletionofgermination[124].Highlyleakageofcellularsolutesduetoinitialimbibitionindicatescellularmembranesdamagecausedbyrehydration.Inaddition,dryingandrapidseeddehydrationprocessesinfluenceDNAintegrity[125].Seedshavedevelopedanumberofrepairmechanismsduringseedgermination,includingtherepairofmembranes,aswellasproteinsandDNA[126].Understressconditions,phytohormonesplayacrucialroleviaresponsiveproteinmediatedstress.ItwasfoundC1-(cysteinerichproteinfamily)domaincontainingproteinsthatplayapartinplanthormone-mediatedstressresponses[127].Inaddition,72responsiveproteinsmediatedstressareidentifiedinArabidopsisthatcontainedallthreeuniquesignaturedomains.ManyhydrolyticenzymesbiosynthesisandactivityareinfluencedbyGA3inwheatandbarley.CatalaseandascorbateperoxidaseactivityshowedasignificantimprovementinwheatSA-andGA-primedwheatseedscomparedtotheunprimed[128,129].Advertisement5.Primingstrategytoimproveseedgerminationunderstressfulornon-stressfulconditionsUndervariousconditions,thepotentialofseedsforrapiduniformemergenceanddevelopmentundervariousconditionsisdeterminedmostlybyseedvigortrait[130].Recentstrategiesforimprovementseedqualityinvolvedclassicalgenetic,molecularbiologyandinvigorationtreatmentsknownasprimingtreatments.Seedprimingwasaimedprimarilytocontrolseedhydrationbyloweringexternalwaterpotential,orshorteningthehydrationperiod,becauseofmostseedsarepartiallyhydratedafterprimingprocessandreachapre-germinatestagewithoutradicleprotrusion[131].Itwasreportedthatprimedseedsshowedimprovedgerminationrateanduniformityunderbothoptimalandadverseenvironmentsinwheat[132].Thecellularmechanismofprimingasitrelatestoimprovedstresstoleranceingerminatingseedsisstillrequiredmorestudy.Currentlyseedprimingtechniquesincludeosmopriming(soakingseedsinosmoticsolutionsasPEGorinsaltsolutions),hydropriming(soakingseedsinpredeterminedamountsofdistilledwaterorlimitingimbibitionperiods),andhormonepriming(seedaretreatedwithplantgrowthregulators)whicharemorecommonlystudiedinlaboratoryconditions,andthermopriming(itisaphysicaltreatmentachievedbypre-sowingofseedsatdifferenttemperaturethatimprovegerminationvigorunderadverseenvironmentalconditions)andmatricpriming(mixingseedswithorganicorinorganicsolidmaterialsandwaterindefiniteproportionsandinsomecasesaddingchemicalorbiologicalagents)[130,133].Hydroprimingandosmoprimingwithlarge-sizedprimingmoleculescannotpermeatecellwall/membranesowaterinfluxwouldbetheonlyexternalfactoraffectingpriming.Thedeterminationofsuitableprimingtechniqueisdependentmainlyonplantspecies,seedmorphologyandphysiology.Ontheotherhand,saltsandhormoneprimingaffectnotonlytheseedhydrationbutalsoothergermination-relatedprocessesduetoabsorptionofexogenousions/hormones,consequentlyconfusingtheeffectsofimbibitionversusthatofions/hormones.Improvementgerminationperformanceofprimedseedsmaybeconsideredaresultofadvancedmetabolismprocesses[134]includingenhancementeachoftheefficiencyofrespiration[135]andantioxidantactivity[136],initiationofrepairingprocesses[137]andalterationphytohormonalbalance[138].Also,improvementofgerminationperformancemaybelinkedtohigherexpressionsofgenesandproteinsinvolvedinwatertransport,cellwallmodification,cytoskeletalorganization,andcelldivisionandincreasesinproteinsynthesispotential,post-translationalprocessingcapacity,andtargetedproteolysishavebeenlinkedtotheadvancedgerminationofprimedseeds[139].Seedgerminationprocessisregulatedbyanetworkoftranscriptionfactorsthathavebothconfusedandseparatefunctions.Inordertomaintainorbreaktheperiodofarrestedgerminationandtocompletegerminationunderstressconditions,differentmetabolicpathwaysincludingphytohormonesbiosynthesisandsignaltransductionpathways,chromatinmodifications,andmicroRNAposttranscriptionalregulation,areinvolved[140].Manyeffectsonmetabolicprocesses,germinationperformanceandseedlingestablishmentduetoseedprimingwithH2O2wereobservedalthoughseedsoakingfollowedbydehydrationhaveanimportantroleincontrollinggeneexpressionandbiosynthesisofproteins[141].Seedprimingwithauxin,cytokinin,GA,andethylene(ET)resultedinimprovementofgerminationofpigeonpeaseedsunderbothcontrolandCd-stressconditions[142].ABApretreatedseedsshowedareductioningerminationthatmaybeattributedtometabolicdeviation,limitingtheavailableenergyandchangesinmetabolomicsormaybeattributedtomodulatetheendogenousABAlevel[143].Oncontrary,GA3seedtreatmenthasnotaffectseedgerminationsubstantially.ItisdocumentedthatGA3haveastimulatoryeffectsongerminationandassociatedenzymes[144].Also,auxinnamelyIAAisdocumentedtoregulateseeddormancyandplantshadeavoidancesyndromethatadverselyaffectsseedlingdevelopmentandcropyield[145].CytokininpretreatmentmayactasauxinsinpromotingseedgerminationbyantagonizingtheinhibitoryeffectofABAongerminationprocess.However,itwasfoundthatcytokininantagonizetheinhibitoryeffectofABAonpost-germinatinggrowthofArabidopsisthroughthestimulationofABI5proteindegradation[146].RecentlypublisheddatasupporttheexistenceofinteractionsbetweenROSandphytohormonesignalingnetworksthatmodulategeneexpressionandcellularredoxstatus[147].InteractionbetweenphytohormonesandH2O2canbeantagonisticorsynergistic.SignalingprocessestriggerinteractionsarenotdevelopedonlybetweenparticularphytohormonesbutalsobetweenphytohormonesandothersignalingmoleculessuchasNO[148],H2S[149],·OH[150]andH2O2[151],whichisbelievedtoplayacentralroleinsignalingprocessesduringplantdevelopmentandstressresponses[152].GAtreatmentenhancedROSproductionnamelysuperoxideandH2O2inradishplants[153]andArabidopsis[154].Ontheotherhand,exogenousapplicationofH2O2doesnotinfluenceABAbiosynthesisandsignalingbutithasamorepronouncedeffectonGAsignaling,resultinginthemodulationofhormonalbalanceandinsubsequentgerminationinitiation[154].ItwasshowedthatH2O2diminishedtheinhibitoryeffectsofABAonendospermdamage.Mülleret al.[155]showedthatH2O2abolishesinhibitoryeffectsofABAonendospermrupture.AssuggestedpreviouslybyLariguetet al.[154],H2O2regulatestheexpressionofgeneencodingenzymehydrolyzingthetestaandendosperm,whichfacilitateArabidopsisgerminationbyreleasingtheembryofromthecontroloftheseedenvelope.Advertisement6.TherespiratoryreactivationduringseedgerminationTheinitialliberationofseedstoredfoodatthebeginningofgerminationismainlybyanaerobicrespiration.Anaerobicrespirationiscatalyzedbytheactivityofenzymeswhicharenotrequiredaerobicconditionssuchasdehydrogenases[156].Dehydrogenasefacilitatingthetransportofelectronsfromsubstratestooxygenthroughelectrontransportchainusingnicotinamideadeninedinucleotide(NAD+),nicotinamideadeninedinucleotidephosphate(NADP+)orriboflavinascofactor[157].Activitiesofdehydrogenaseshavebeenshowntoinvolvetheactivitiesofalcoholdehydrogenase,lactatedehydrogenaseandsuccinatedehydrogenase[158]whichmediatedtheconversionofstoragelipidandcarbohydratesthroughtheanaerobicrespiration.Succinatedehyrogenase,acomplexenzymetightlyboundtotheinnermitochondrialmembraneoxidizessuccinatetofumarate[159].LactatedehydrogenasecatalyzesthereversibleoxidationoflactatetopyruvateusingNAD+asaco-enzyme.Anaerobicrespirationwasrecordedtotakeplaceduringrestingstagesofseedsandtheinitialstagesofseedgermination[160].Itwasshowedthatthereactivityofdehydrogenasescoveredthefirst3daysofcowpeaseedgerminations[161].Theincreaseinrespiratoryrateingerminatingseedsisassociatedwiththeincreaseinglycolyticactivity.TheintermediatesofglycolysisaretransferredtotheOPPPpathwaywhichfeedsitsproductsbackintoglycolysis,sotheactivityofthispathwayisalsoimportantindeterminingthefluxthroughglycolysis[162].Duringgermination,seedsusesugarsandothermoleculesasasubstrateforrespiration.α-amylaseandβ-amylaseareinvolvedindegradationofendospermstarch.Starchhydrolysisintoglucoseiscatalyzedbyactionofα-andβ-amylases,debranchingenzymeandα-glucosidases(maltase)[163].So,importanceofamylasesisrelatedtotheirabilitytoprovidegrowingembryowithrespiratorysubstratesforproducingenergyandcarbonsourceuntiltheestablishedseedlingcanphotosynthesize.Inaddition,embryogrowthfromquiescentstagetoactivephasedependingmainlyontheutilizationofstoredATPandstoragelipidbreakdownproducts[164].Seedgerminationrepresentsagoodperiodformitochondriadevelopmentstudy.Resultsobtainedfromprevioustranscriptomestudiesrecordedasubstantialincreaseinmitochondrialtranscriptsencodingproteinsandproteincontentaccompaniedwithchangesintheirfunctionsduringearly3 hofseedimbibitions[165].Duringthefirst48 hofseedimbibitions,56differentiallyexpressedproteinsweredetectedwhichincludetheoutermembranechannelTOM40andtheinnermembraneTIM17/22/23families,comparedtodryseed.Theinterpretationofsuggestionthatimportpathwaycapacityisabsolutelydependentonthepresenceofoxygen(aerobicrespiration)isrelatedtothesignificantdecreaseincapacityofthegeneralimportpathwayinmitochondriaunderanaerobicconditions,comparedtounderaerobicconditions.Insupportingforthissuggestion,threeproteinsfromtheTIM17/22/23familywerefoundtobe6–14foldsup-regulatedunderanaerobicconditions[166]andadeclineinproteinsinvolvingimportapparatuswasdetectedinthematuremitochondriathatmightbesuggestedthattheaccumulationoftheseimportproteinsinthedryseedcouldoperatefunctionsafter2 himbibition,andthenserveasdonorsofTCAcycleandelectrontransportchaincomponents[167].Advertisement7.TheroleofglyoxylatecycleinoilseedgerminationGlyoxylatecyclehasbeenknowntoplayacrucialroleinlipiddegradationinoilseeds,whereasstoredlipidisconvertedintoglucosethemainrespiratorysubstrateduringgerminationandhenceseedlingestablishment[168].Seedimbibitiontriggershighlyincreaseinoxygenconsumptionwhichreflectstheenhancementofoxidationofproducedcarbohydratesfromtheglyoxylatecycle[169].Alongsidetoglyoxylatecycle,theOPPPoperateswhereanumberofenzymesandintermediatesparticipatethetwopathways[170].ItfunctionstoprovidethecellwithNADPHforbiosyntheticreactionsandappearstobeimportantintheregulationofgermination[171].Theactionofthetwoglyoxylatecycleenzymesisocitratelyase(ICL)andmalatesynthase(MS)thatbypassthedecarboxylationstepsoftheTCAcycleareessentialinoilseedgermination.Whereas,twomolesofacetyl-CoAareintroducedwitheachturnofthecycle,resultinginthesynthesisofonemoleofthefour-carboncompoundsuccinatethataretransportedfromtheglyoxysomeintothemitochondrionandconvertedintomalateviaTCAcycle.Thismalateisthenexportedtocytosolinexchangeforsuccinateandisconvertedtooxalacetate.PEP-CKcatalyzestheconversionofoxaloacetatetophosphoenolpyruvateandthisfuelsthesynthesisofsolublecarbohydratesnecessarytogermination[169].Advertisement8.ConclusionUnderstressfulconditions,oxidativedamagetomRNAresultsintheinhibitionofproteinsynthesisandinproteindegradationwhichcauseddisturbanceinproteinfunctionsduetoenzymaticandbindingpropertiesmodification.Consequently;seedgerminationmaydelayorsuppress.Theprimingtechniquesimprovestressacclimationmechanismsduringgerminationbutthecellularmechanismofprimingisstillrequiresmorestudying.Inresponsetoabioticstresses,activityofacidphosphatasesincreasedtomatchadefinitelevelofinorganicphosphatewhichcanbeco-transportedwithH+downprotonmotiveforcegradient.Thesignalinginteractionsamongmultiplephytohormonesarerathercommonincontrollingvariousgrowthanddevelopmentalprocesses.Hormonalsignalingcoordinationmayberegulatedthroughcontrollingbiosynthesisofcertainphytohormone,bymodifyingtheavailablepoolofhormonemoleculesorbyelaborateregulationofthesignalingprocess.However;seedpretreatmentwitheachofGAs,auxinsorcytokininpromoteseedgerminationnotonlythroughstimulationofhydrolyzingenzymesbutalsobyantagonizingtheinhibitoryeffectofABAongerminationprocess.Phytohormonesignalcrosstalkwillpresentvaluablenewavenuesforgeneticimprovementofcropplantsneededtomeetthefuturefoodproductiontargetsinthefaceofglobalclimatechange.Surprising;seedprimingwithH2O2resultedinimprovementgerminationprocessandseedlingestablishment.ThismayberesultedfromitseffectonGAsignalingandmodulationofhormonalbalancethatpromoteinitiationofseedgermination.Inaddition;H2O2diminishedtheinhibitoryeffectsofABAonendospermdamagethroughexpressionofgeneencodingenzymehydrolyzingthetestaandendospermwiththereleasingofembryo.References1.HasanuzzamanM,NaharK,AlamMM,RoychowdhuryR,FujitaM. Physiological,biochemical,andmolecularmechanismsofheatstresstoleranceinplants.InternationalJournalofMolecularSciences.2013;14:9643-96842.BorgherettiF,FerreiraAG. Germinaçãodobásicoaoaplicado.PortoAlegre:Artmed;2000.222p3.ZienkiewiczZ,ZienkiewiczAK,RejonJD,AlcheJD,CastroAJ,Rodringuez-GarciaMI. Oliveseedproteinbodiesstoredegradingenzymesinvolvedinmobilizationofoilbodies.JournalofExperimentalBotany.2014;65:103-115.DOI:10.1093/jxb/ert3554.GonçalvesJFC,et al.AspectosfisiológicosbioquímicosdeplantasdaAmazônia.ProjetoJacarandaFaseII:PesquisasFlorestaisnaAmazôniaCentral.Manaus:INPA;2003.p.89-1015.BewleyJD,BlackM. PhysiologyofDevelopmentandGermination.2nded.New York:PlenumPress;1994445p6.BewleyJD. Seedgerminationanddormancy.ThePlantCell.1997;9:1055-10667.BewleyJD,BradfordK,HilhorstH,NonogakiH. Seeds:PhysiologyofDevelopment,GerminationandDormancy.3rded.New York:Springer;20138.JacobsenJV,ChandlerPM. Gibberellinandabscisicacidingerminatingcereals.In:DaviesPJ,editor.PlantHormones:Physiology,BiochemistryandMolecularBiology.Boston,MA:Kluwer;1995.p. 164-1939.BethkePC,SchuurinkR,JonesRL. Hormonalsignalingincerealaleurone.JournalofExperimentalBotany.1997;48:1337-1356.DOI:10.1093/jxb/48.7.133710.LeeSJ,KangJY,ParkHJ,KimMD,BaeMS,ChoiHI,et al.DREB2CinteractswithABF2,abZIPproteinregulatingabscisicacid-responsivegeneexpression,anditsoverexpressionaffectsabscisicacidsensitivity.PlantPhysiology.2010;153(2):716-72711.FirenzuoliAM,VanniP,RamponiG,BaccariV. ChangesinenzymelevelsduringgerminationofseedsofTriticumdurum.PlantPhysiology.1968;43:260-264.DOI:10.1104/pp.43.2.26012.CarterLM,ChessonJH. TwoUSDAresearchersdevelopamoistureseekingattachmentforcropseedersthatisdesignedtohelpgrower’splantseedinsoilsufficientlymoistforgermination.SeedWorld.1996;134:14-1513.MunnsR. Comparativephysiologyofsaltandwaterstress.Plant,Cell&Environment.2002;25:239-25014.SinghJ,SastryEVD,SinghV. Effectofsalinityontomato(Lycopersiconesculentummill.)duringseedgerminationstage.PhysiologyandMolecularBiologyofPlants.2012;18:45-5015.KaurS,GuptaAK,KaurN. EffectofGA3,kinetinandindoleaceticacidoncarbohydratemetabolisminchickpeaseedlingsgerminatingunderwaterstress.PlantGrowthRegulation.2000;30:61-7016.ZeidIM,ShedeedZA. Responseofalfalfatoputrescinetreatmentunderdroughtstress.BiologiaPlantarum.2006;50:635-64017.JacobsenJV,HansonAD,ChandlorPC. Waterstressenhancesexpressionofα-amylasegeneinbarleyleaves.PlantPhysiology.1986;80:350-35918.TodakaD,MatsushimaH,MorphashiY. Waterstressenhancesα-amylaseactivityincucumbercotyledons.JournalofExperimentalBotany.2000;51:739-74519.VelascoR,SalaminiF,BartelsD. DehydrationandABAincreasemRNAlevelsandenzymeactivityofcytosolicGAPDHintheresurrectionplantCraterostigmaplantagineum.PlantMolecularBiology.1994;26:541-54620.PandeyR,AgarwalRM,JeevaratnamK,SharmaGL. Osmoticstress-inducedalterationsinrice(OryzasativaL.)andrecoveryonstressrelease.PlantGrowthRegulation.2004;42:79-8721.BaatourO,KaddourR,WannesWA,LachaâlM,MarzoukB. Salteffectsonthegrowth,mineralnutrition,essentialoilyieldandcompositionofmarjoram(Origanummajorana).ActaPhysiologiaePlantarum.2010;32:45-5122.JobC,RajjouL,LovignyY,BelghaziM,JobD. PatternsofproteinoxidationnArabidopsisseedsandduringgermination.PlantPhysiology.2005;138:790-802.DOI:10.1104/pp.105.06277823.GargN,ManchandaG. ROSgenerationinplants:Boonorbane?PlantBiosystems.2009;143:81-9624.YacoubiR,JobC,BelghaziM,JobD. Proteomicanalysisoftheenhancementofseedvigourinosmoprimedalfalfaseedsgerminatedundersalinitystress.SeedScienceResearch.2013;23(2):99-11025.YinH,ChenQ,YiM. Effectsofshort-termheatstressonoxidativedamageandresponsesofantioxidantsysteminLiliumlongiflorum.PlantGrowthRegulators.2008;54:45-5426.ZhangQ,LiJJ,ZhangWJ,YanSN,WangR,ZhaoJF,LiYJ,QiZG,SunZX,ZhuZG. TheputativeauxineffluxcarrierOsPIN3tisinvolvedinthedroughtstressresponseanddroughttolerance.ThePlantJournal.2012;72:805-81627.DasAB. Bioprospectingandgeneticengineeringofmangrovegenestoenhancesalinitytoleranceincropplants.In:JainSM,GuptaSD,editors.BiotechnologyofNeglectedandUnderutilizedCrops.New York:Springer;2013.p. 385-45628.FahadS,NieL,ChenY,WuC,XiongD,SaudS,HongyanL,CuiK,HuangL. Cropplanthormonesandenvironmentalstress.SustainAgricultureReviews.2015;15:371-40029.KoornneefM,BentsinkL,HilhorstH. Seeddormancyandgermination.CurrentOpinioninPlantBiology.2002;5:33-3630.AnsariO,ChoghazardiHR,SharifZadehF,NazarliH. Seedreserveutilizationandseedlinggrowthoftreatedseedsofmountainray(Secalemontanum)asaffectedbydroughtstress.CercetăriAgronomiceînMoldova.2012;2(150):43-4831.PatadeVY,MayaK,ZakwanA. Seedprimingmediatedgerminationimprovementandtolerancetosubsequentexposuretocoldandsaltstressincapsicum.ResearchJournalofSeedScience.2011;4(3):125-13632.MayerAM,ShainY. Controlofseedgermination.AnnualReviewofPlantPhysiology.1974;25:167-19333.BewleyJD,BlackM. Seeds:PhysiologyofDevelopmentandGermination.New York:PlenumPress;198534.MayerAM,Poljakoff-MayberA. TheGerminationofSeeds.4thed.Oxford:PergamonPress;198935.SalisburyFB,RossCW. PlantPhysiology.4thed.Belmont,California,USA:WadsworthPublishingCompany;199136.ShutovAD,VaintraubIA. Degradationofstorageproteinsingerminatingseeds.Phytochemistry.1987;26:1557-156637.GepstinS,HanI. Evidencefortheinvolvementofcytokininintheregulationofproteolyticactivityincotyledonsofgerminatingbeans.PlantandCellPhysiology.1980;21(1):57-6338.ShivarajB,PattabiramanTN. Naturalplantenzymeinhibitors,partVIII. IndianJournalofBiochemistry&Biophysics.1980;17:181-18539.VeerabhadrappaPS,ManjunathNH,VirupakshaTK. Proteinaseinhibitorsoffingermillet(Eleusinecoracanagaertn.).JournaloftheScienceofFoodandAgriculture.1978;29(4):353-35840.TullyRE,BeeversH. Proteaseandpeptidasesofcastorbeanendosperm.Enzymecharacterizationandchangesduringgermination.PlantPhysiology.1978;62:726-75041.SchlerethA,BeckerC,HorstmannC,TiedemannJ,MüntzK. Comparisonofglobulinmobilizationandcysteineproteinasesinembryonicaxesandcotyledonsduringgerminationandseedlinggrowthofvetch(ViciasativaL.).JournalofExperimentalBotany.2000;51:1423-143342.YanoH,WongJH,LeeYM,ChoMJ,BuchananBB. Astrategyfortheidentificationofproteinstargetedbythioredoxin.ProceedingsoftheNationalAcademyofSciencesUSA.2001;98:4794-4799.DOI:10.1073/pnas.07104199843.YanoH,MasaharuKM. Disulfideproteomeyieldsadetailedunderstandingofredoxregulations:Amodelstudyofthioredoxin-linkedreactionsinseedgermination.Proteomics.2006;6:294-300.DOI:10.1002/pmic.20040203344.DunaevskyYE,BelozerskyMA. Proteolysisofthemainstorageproteinofbuckwheatseedsattheearlystageofgermination.PhysiologiaPlantarum.1989;75:424-42845.BelozerskyMA,DunaevskyYE,VoskoboynikovaNE. Isolationandpropertiesofametalloproteinasefrombuckwheatseeds.TheBiochemicalJournal.1990;272:677-68246.ElpidinaEN,DunaevskyYE,BelozerskyMA. Proteinbodiesfrombuckwheatseedcotyledons:Isolationandcharacteristics.JournalofExperimentalBotany.1990;41:969-97747.DunaevskyYE,BelozerskyMA. Theroleofcysteineproteinaseandcarboxypeptidaseinthebreakdownofstorageproteinsinbuckwheatseeds.Planta.1989;179:316-32248.PalegLG. PhysiologicaleffectsofgibberellicacidII. Onstarchhydrolysisenzymesofbarleyendosperm.PlantPhysiology.1960;35:902-90649.ChrispeelsMJ,VarnerJE. Gibberellicacidenhancedsynthesisandreleaseofα-amylaseandribonucleasebyisolatedbarleyaleuronelayers.PlantPhysiology.1967;42:398-40650.JonesRL,JacobsenJV. Regulationofsynthesisandtransportofsecretedproteinsincerealaleurone.InternationalReviewofCytology.1991;126:49-8851.FilnerP,VarnerJE. Asimpleandunequivocaltestfordenovosynthesisofenzymes:Densitylabelingofbarleyα-amylasewithH2O18.ProceedingsoftheNationalAcademyofSciencesUSA.1967;58:1520-152652.ParysE,RomanowskaE,PoskutaJ. AmylaseactivitiesinattachedandexcisedcotyledonsandinembryonicaxesofPisumsativumL. PlantandCellPhysiology.1983;21:181-18853.WangY,WangDM,LiangHG. Effectonplumularaxisontheamylaseactivityincotyledonsofgerminatingpeaseeds.ActaPhytophysiologySinica.1988;14(3):244-24954.KępczyńskiJ. Ethylene-dependentactionofgibberellinsinseedgerminationofAmaranthuscaudatus.PhysiologiaPlantarum.1986;67:584-58755.WilsonAM. Amylasesynthesisandstabilityincrestedwheatgrassseedsatlowwaterpotentials.PlantPhysiology.1971;48:541-54656.HellyerSA,ChandlerIC,BosleyJA. Canthefattyacidselectivityofplantlipasesbepredictedfromthecompositionoftheseedtriglyceride?BiochemicaBiophysicaActa.1999;1440(2-3):21557.PaquesFW,MacedoGA. LipasesdeLátexVegetais:PropriedadeseAplicaçõesIndustriais:AReview.QuímicaNova.2006;29(1):9358.QuettierAL,EastmondPJ. Storageoilhydrolysisduringearlyseedlinggrowth.PlantPhysiologyandBiochemistry.2009;47:48559.HuttonD,StumpfPK. Fatmetabolisminhigherplant.Characterisationofβ-oxidationsystemfrommaturingandgerminatingcasterbeanseeds.PlantPhysiology.1969;44:508-51660.PereiraEP,ZaninGM,CastroHF. Immobilizationandcatalyticpropertiesoflipaseonchitosanforhydrolysisandetherificationreactions.BrazilianJournalofChemicalEngineering.2003;20(4):34361.LealMCM,CammarotaMC,FreireDMG,Sant’AnnaJGL. Hydrolyticenzymesascoadjuvantsintheanaerobictreatmentofdairywastewaters.BrazilianJournalofChemicalEngineering.2002;19(2):17562.FreireGDM,CastilhoFL. LipasesemBiocatálise.In:Bonet al.(org),editor.Enzimasembiotecnologia:Produção,AplicaçãoeMercado.RiodeJaneiro:Interciência;200863.VilleneuveP. Plantlipasesandtheirapplicationsinoilsandfatsmodification.EuropeanJournalofLipidScienceandTechnology.2003;105(6):30864.CastroHF,AndersonWA. Finechemicalsbybiotransformationusinglipases.QuimicaNova.1995;18(6):544-55465.TavenerRJA,LaidmanDL. Theinductionoftriglyceridemetabolisminthegerminatingwheatgrain.Phytochemistry.1972;11:981-98766.ShoshiiM,ReeversH. Lipaseactivityincastorbeenendospermduringgermination.PlantPhysiology.1974;54:23-2867.AnthonyHC,HuangAHC,MoreauRA. Lipasesinthestoragetissuesofpeanutandotheroilseedsduringgermination.Planta.1978;141:111-11668.BaudS,DubreucqB,MiquelM,RochatC,LepiniecL. StoragereserveaccumulationinArabidopsis:Metabolicanddevelopmentalcontrolofseedfilling.ArabidopsisBookAmericanSocietyofPlantBiology.2008;6:e0113.DOI:10.1199/tab.011369.RatajczakW. AsparaginemetabolismindevelopingseedsofLupinusluteusL. BiochemieundPhysiologiederPflanzen.1986;181:17-2270.LehmannT,RatajczakL. Thepivotalroleofglutamatedehydrogenase(GDH)inthemobilizationofNandCfromstoragematerialtoasparagineingerminatingseedsofyellowlupine.JournalofPlantPhysiology.2008;165:149-158.DOI:10.1016/j.jplph.2006.12.01071.BorekS,GalorA,PaluchE. Asparagineenhancesstarchaccumulationindevelopingandgerminatinglupinseeds.JournalofPlantGrowthRegulation.2013;32:471-48272.RatajczakW,Gwóźdz´EA,Mia˛dowiczM. Effectsofnitrogennutritiononstorageproteincompositionyellowlupincotyledonsculturedin vitro.ActaPhysiologiaePlantarum.1996;18:295-30473.VidalEA,GutiérrezRA. AsystemsviewofnitrogennutrientandmetaboliteresponsesinArabidopsis.CurrentOpinioninPlantBiology.2008;11:521-52974.PracharoenwattanaI,SmithSM. Whenisaperoxisomenotaperoxisome?TrendsinPlantScience.2008;13:522-52575.BorekS,RatajczakL. Storagelipidsasasourceofcarbonskeletonsforasparaginesynthesisingerminatingseedsofyellowlupine(LupinusluteusL.).JournalofPlantPhysiology.2010;167:717-72476.JacelaJY,DeRoueheyTokachMD,GoodbandRD,NelssenJL,RenterD,DritzSS. Feedadditivesforswine:Factsheets-prebioticsandprobiotisandphytogenics.JournalofSwineHealthandProduction.2010;18:87-9177.LottJNA,GreenwoodJS,BattenGD. Mechanismsandregulationofmineralnutrientstorageduringseeddevelopment.In:KigelJ,GaliliG,editors.SeedDevelopmentandGermination.New York:MarcelDekkerInc;1995.p. 215-23578.ThompsonLU,ZhangL. Phyticacidandminerals:Effectonearlymarkersofriskformammaryandcoloncarcinogenesis.Carcinogenesis.1991;12:2041-204579.CoelhoSM,TaylorAR,RyanKP,Sousa-PintoI,BrownMT,BrownleeC. SpatiotemporalpatterningofreactiveoxygenproductionandCa2+wavepropagationinFucusrhizoidcells.ThePlantCell.2002;14:2369-238180.OkazakiY,KatayamaT. Reassessmentofthenutritionalfunctionofphyticacid,withspecialreferencetomyo-inositolfunction.JournalofJapanSocietyofNutritionandFoodSciences.2005;58:151-15681.ShiH,BressanR,HasegawaPM,ZhuJ-K. In:BroadlayM,WhiteP,editors.SodiuminPlantNutritionalGenomics.London:BlackwellPublishing;2005.p. 127-14982.BuerkertA,HaakeC,RuckwiedM,MarschnerH. Phosphorusapplicationaffectsthenutritionalqualityofmilletgraininthesahel.FieldCropsResearch.1998;57:223-23583.SantosJCP. Estadonutricionaldofeijoeiro(PhaseolusvulgarisL.)eteoresdenutrientesefitatosnosgrãos.Piracicaba:UniversidadedeSãoPaulo.Tesededoutorado;199884.RaboyV,NoamanMM,TaylorGA,PickettSG. Grainphyticacidandproteinarehighlycorrelatedinwinterwheat.CropScience.1991;31:631-63585.HubelF,BeckE. Maizerootphytase.Purification,characterization,andlocalizationofenzymeactivityanditsputativesubstrate.PlantPhysiology.1996;112:1429-143686.MukherjiS,DeyB,PaulAK,SircarSM. Changesinphosphorusfractionsandphytaseactivityofriceseedsduringgermination.PhysiologiaPlantarum.1971;25:94-9787.SilvaLG,TrugoLC. Characterizationofphytaseactivityinlupinseed.JournalofFoodBiochemistry.1996;20:329-34088.AndriotisVME,RossJD. IsolationandcharacterizationofphytasefromdormantCorylusavellanaseeds.Phytochemistry.2003;64:689-69989.AzarkovichMI,DmitrievaMI,SobolevAM. Mobilizationofproteinandphytininaleuronegrainsofgerminatingcastorbeans.RussianJournalofPlantPhysiology.1999;46:349-35690.OgawaM,TanakaK,KasaiZ. Accumulationofphosphorus,magnesium,andpotassiumindevelopingricegrains:FollowedbyelectronmicroprobeX-rayanalysisfocusingonthealeuronelayer.PlantandCellPhysiology.1979;20:19-2791.RaboyV. Myo-Inositol-1,2,3,4,5,6-hexakisphosphate.Phytochemistry.2003;64:1033-104392.FincherGB. Molecularandcellularbiologyassociatedwithendospermmobilizationingerminatingcerealgrains.AnnualReviewofPlantPhysiology.1989;40:305-34693.MihoubA,ChaouiA,El-FerjaniE. Biochemicalchangesassociatedwithcadmiumandcopperstressingerminatingpeaseeds(PisumsativumL.).CompetesRendusBiologies.2005;328:33-4194.OlmosE,HellinE. CytochemicallocalizationofATpaseplasmamembraneandacidphosphatasebyceriumbasedinasalt-adaptedcelllineofPisumsativum.JournalofExperimentalBotany.1997;48:1529-153595.BaiB,SikronS,GendlerT,KazachkovaY,BarakS,GrafiG,Khozin-GoldbergI,FaitA.Ecotypicvariabilityinthemetabolicresponseofseedstodiurnalhydration–dehydrationcyclesanditsrelationshiptoseedvigor.PlantandCellPhysiology.2011;53(1):38-5296.NonogakiH,BasselGW,BewleyJD. Germination–stillamystery.PlantScience.2010;179:574-581.DOI:10.4161/psb.2550497.El-Maarouf-BouteauH,BaillyC. Oxidativesignalinginseedgerminationanddormancy.PlantSignaling&Behavior.2008;3:175-182.DOI:10.4161/psb.3.3.553998.KubalaS,WojtylaŁ,QuinetM,LechowskaK,LuttsS,GarnczarskaM. EnhancedexpressionoftheprolinesynthesisgeneP5CSAinrelationstoseedosmoprimingimprovementofBrassicanapusgerminationundersalinitystress.JournalofPlantPhysiology.2015;183:1-12.DOI:10.1016/j.jplph.2015.04.00999.BaillyC,El-Maarouf-BouteauH,CorbineauF. Fromintracellularsignalingnetworkstocelldeath:Thedualroleofreactiveoxygenspeciesinseedphysiology.ComptesRendusBiologies.2008;331:806-814.DOI:10.1016/j.crvi.2008.07.022100.KumarSPJ,PrasadSR,BanerjeeR,ThammineniC. Seedbirthtodeath:Dualfunctionsofreactiveoxygenspeciesinseedphysiology.AnnalsofBotany.2015;116:663-668.DOI:10.1093/aob/mcv098101.MøllerIM,JensenPE,HanssonA. Oxidativemodificationstocellularcomponentsinplants.AnnualReviewofPlantBiology.2007;58:459-481.DOI:10.1146/annurev.arplant.58.032806.103946102.PommierY,RedonC,RaoVA,SeilerJA,SordetO,TakemuraH,et al.RepairofandcheckpointresponsetotopoisomeraseI-mediatedDNAdamage.MutationResearch.2003;532:173-203.DOI:10.1016/j.mrfmmm.08.016103.KongQM,LinCG. OxidativedamagetoRNA:Mechanisms,consequencesanddiseases.CellularandMolecularLifeSciences.2010;67:1817-1829.DOI:10.1007/s00018-010-0277-y104.Chmielowska-BkakJ,IzbiańskaK,DeckertJ. Productsoflipid,proteinandmRNAoxidationassignalsandregulatorsofgeneexpression.FrontiersinPlantScience.2015;6:405.DOI:10.3389/fpls.2015.00405105.DaviesMJ. Theoxidativeenvironmentandproteindamage.BiochimicaetBiophysicaActa.2005;1703:93-109.DOI:10.1016/j.bbapap.2004.08.007106.Barba-EspinGet al.Roleofthioprolineonseedgermination:InteractionROS-ABAandeffectsonantioxidativemetabolism.PlantPhysiologyandBiochemistry.2011;59:30-36.DOI:10.1016/j.plaphy.2011.12.002.3107.KudlaJ,BatisticO,HashimotoK. Calciumsignals:Theleadcurrencyofplantinformationprocessing.ThePlantCell.2010;22:541-563108.ReddyAS,AliGS,CelesnikH,DayIS. Copingwithstresses:Rolesofcalcium-andcalcium/calmodulin-regulatedgeneexpression.ThePlantCell.2011;23(6):2010-2032109.FinnieC,MelchiorS,RoepstorffP,SvenssonB. Proteomeanalysisofgrainfillingandseedmaturationinbarley.PlantPhysiology.2002;129:1308-1319110.KomatsuS,YangG. Over-expressionofcalcium-dependentproteinkinase13andcalreticulininteractingprotein1conferscoldtoleranceonriceplants.MolecularGeneticsandGenomics.2007;277:713-723111.GalatA. Variationsofsequencesandaminoacidcompositionofproteinsthatsustaintheirbiologicalfunction:Ananalysisofthecyclophilinfamilyofproteins.ArchivesofBiochemistryandBiophysics.1999;371(2):149-162112.FitterAH,HayRKM. EnvironmentalPhysiologyofPlants.New York:AcademicPress;1981113.WaniSH,KumarV,ShriramV,KumarS. Phytohormonesandtheirmetabolicengineeringforabioticstresstoleranceincropplants.TheCropJournal.2016;4:162-176114.PrestonJ,TatematsuK,KannoY,HoboT,KimuraM,JikumaruY,et al.TemporalexpressionpatternsofhormonemetabolismgenesduringimbibitionofArabidopsisthalianaseeds:Acomparativestudyondormantandnondormantaccessions.PlantandCellPhysiology.2009;50:1786-1800115.DaveA,MLH’n,HeZ,AndriotisVM,VaistijFE,LarsonTR,et al.12-Oxo-phytodienoicacidaccumulationduringseeddevelopmentrepressesseedgerminationinArabidopsis.ThePlantCell.2011;23:583-599116.CarreraE,HolmanT,MedhurstA,DietrichD,FootittS,TheodoulouFL,et al.Seedafter-ripeningisadiscretedevelopmentalpathwayassociatedwithspecificgenenetworksinArabidopsis.ThePlantJournal.2008;53:214-224117.SteberCM,McCourtP. AroleforbrassinosteroidsingerminationinArabidopsis.PlantPhysiology.2001;125:763-769118.VobU,BishoppA,FarcotA,BennettMJ. Modellinghormonalresponseanddevelopment.TrendsinPlantScience.2014;19:311-319119.Leubner-MetzgerG,FründtC,Vögeli-LangeR,MeinsFJ.β-1,3-glucanasesintheendospermoftobaccoduringgermination.PlantPhysiology.1995;109:751-759120.NonogakiH,GeeOH,BradfordKJ. Agermination-specificendo-β-mannanasegeneisexpressedinthemicropylarendospermcapoftomatoseeds.PlantPhysiology.2000;123:1235-1245121.KoornneefM,KarssenCM.Seeddormancyandgermination.In:ArabidopsisBook/ColdSpringHarborMonographArchive.1994;27:313-334122.SchopferP,PlachyC. Controlofseedgerminationbyabscisicacid.PlantPhysiology.1985;77(3):676-686123.DebeaujonI,KoornneefM. GibberellinrequirementforArabidopsisseedgerminationisdeterminedbothbytestacharacteristicsandembryonicabscisicacid.PlantPhysiology.2000;122:415-424124.WeitbrechtK,MüllerK,Leubner-MetzgerG. Firstoffthemark:Earlyseedgermination.JournalofExperimentalBotany.2011;62:3289-3309125.MatillaA,GallardoM,Puga-HermidaMI. Structural,physiologicalandmolecularaspectsofheterogeneityinseeds:Areview.SeedScienceResearch.2005;15:63-76126.OgeL,BourdaisG,BoveJ,ColletB,GodinB,GranierF,et al.Proteinrepair-Lisoaspartylmethyltransferase1isinvolvedinbothseedlongevityandgerminationvigorinArabidopsis.ThePlantCell.2008;20:3022-3037127.BhaskarRV,MohantyB,VermaV,WijayaE,KumarPP. Ahormone-responsiveC1-domain-containingproteinAt5g17960mediatesstressresponseinArabidopsisthaliana.PLoS.2015;10(1):115-118.DOI:10.1371/journal.pone.0115418128.HammertonRW,HoT-HD. Hormonalregulationofthedevelopmentofproteaseandcarboxypeptidaseactivitiesinbarleyaleuronelayers.PlantPhysiology.1986;80:692-697129.StuartIM,LoiL,FincherGB. Developmentof(1-3,1-4)-fl-glucanendohydrolaseisoenzymesinisolatedscutellaandaleuronelayersofbarley(Hordeumvulgare).PlantPhysiology.1986;80:310-314130.PaparellaS,AraújoSS,RossiG,WijayasingheM,CarboneraD,BalestrazziA. Seedpriming:Stateoftheartandnewperspectives.PlantCellReports.2015;34:1281-1293.DOI:10.1007/s00299-015-1784-y131.HilhorstHWM,Finch-SavageWE,BuitinkJ,BolingueW,Leubner-MetzgerG.Dormancyinplantseeds.In:LubzensE,CerdàJ,ClarckM,editors.DormancyandResistanceinHarshEnvironments.Heideberg:Springer-Verlag;2010.p. 43-67132.ZhuoJ,WangW,LuY,SenW,WangX. Osmopriming-regulatedchangesofplasmamembranecompositionandfunctionwereinhibitedbyphenylarsinoxideinsoybeanseeds.JournalofIntegrativePlantBiology.2009;9:858-867133.JishaKC,VijayakumariKJT,PuthurJT. Seedprimingforabioticstresstolerance:Anoverview.ActaPhysiologiaePlantarum.2013;3:1381-1396.DOI:10.1007/s11738-012-1186-5134.SoedaY,KoningsMCJM,VorstO,vanHouwelingenAMML,StoopenGM,MaliepaardCA,KoddleJ,BinoRJ,GrootSPC,vanderGeestAHM. GeneexpressionprogramsduringBrassicaoleraceaseedmaturation,osmopriming,andgerminationareindicatorsofprogressionofthegerminationprocessandthestresstolerancelevel.PlantPhysiology2005;137:354-368135.SunJ,HutchinsDA,FengY,SeubertEL,CaronDA,FuF-X. EffectsofchangingpCO2andphosphateavailabilityondomoicacidproductionandphysiologyofthemarineharmfulbloomdiatomPseudo-nitzschiamultiseries.LimnologyandOceanography.2011;56:829-840.DOI:10.4319/lo.2011.56.3.0829136.ChenK,AroraR. Dynamicsoftheantioxidantsystemduringseedosmopriming,post-priminggermination,andseedlingestablishmentinspinach(Spinaciaoleracea).PlantScience.2011;180:212-220.DOI:10.1016/j.plantsci.2010.08.007137.BalestrazziA,MacoveiC,CarboneraD. SeedimbibitioninMedicagotruncatulaGaertn.ExpressionprofilesofDNArepairgenesinrelationtoPEG-mediatedstress.JournalofPlantPhysiology.2011;168:706-713.DOI:10.1016/j.jplph.2010.10.008138.El-ArabyMM,MoustafaSMA,IsmailAI,HegaziAZA. Hormoneandphenollevelsduringgerminationandosmoprimingoftomatoseeds,andassociatedvariationsinproteinpatternsandanatomicalseedfeatures.ActaAgronomicaHungarica.2006;54:441-458.DOI:10.1556/AAgr.54.2006.4.7139.KubalaS,GarnczarskaM,WojtylaŁ,ClippeA,KosmalaA,ZmiénkoA,et al.Decipheringpriming-inducedimprovementofrapeseed(BrassicanapusL.)germinationthroughanintegratedtranscriptomicandproteomicapproach.PlantScience.2015;231:94-113.DOI:10.1016/j.plantsci.2014.11.008140.HilhorstHWM. Definitionandhypothesesofseeddormancy.In:BradfordKJ,NonogakiH,editors.SeedDevelopment,DormancyandGermination.AnnualPlantReviews.Vol.27,Chap4.Sheffield,UK:BlackwellPublishing;2007.p. 50-71141.SneiderisLC,GavassiMA,CamposML,D’Amico-DamiãoV,CarvalhoRF. Effectsofhormonalprimingonseedgerminationofpigeonpeaundercadmiumstress.AnaisdaAcademiaBrasileiradeCiências.2015;87:1847-1852.DOI:10.1590/0001-3765201520140332142.SneiderisAC,GavassiMA,CampiaoVDA,CarvalhoRF. Effectsofhormonalprimingonseedgerminationofpigeonpeaundercadmiumstress.AnnalsoftheBrazilianAcademyofSciences.2015;87(3):1847-1852.DOI:10.1590/0001-3765201520140332143.FincherGB. Molecularandcellularbiologyassociatedwithendospermmobilizationingerminatingcerealgrains.AnnualReviewofPlantPhysiologyandPlantMolecularBiology.1989;40:305-346144.LiuW-Z,KongD-D,GuX-X,GaoHB,WangJ-Z,XiaM,et al.CytokininscanactassuppressorsofnitricoxideinArabidopsis.ProceedingsoftheNationalAcademyofSciencesUSA.2013;110:1548-1553.DOI:10.1073/pnas.1213235110145.ProckoC,CrenshawCM,LjungK,NoelJP,ChoryJ. Cotyledongeneratedauxinisrequiredforshade-inducedhypocotylgrowthinBrassicarapa.PlantPhysiology.2014;165:1285-1301.DOI:10.1104/pp.114.241844146.GuanC,WangX,FengJ,HongS,LiangY,RenB,et al.Cytokininantagonizesabscisicacid-mediatedinhibitionofcotyledongreeningbypromotingthedegradationofabscisicacidinsensitive5proteininArabidopsis.PlantPhysiology.2014;164:1515-1526.DOI:10.1104/pp.113.234740147.XiaX-J,ZhouY-H,ShiK,ZhouJ,FoyerCH,HuJ-Q. Interplaybetweenreactiveoxygenspeciesandhormonesinthecontrolofplantdevelopmentandstresstolerance.JournalofExperimentalBotany.2015;66:2839-2856.DOI:10.1093/jxb/erv089148.SanzL,AlbertosP,MateosI,Sánchez-VicenteI,LechónT,FernándezMarcosM,LorenzoO. Nitricoxide(NO)andphytohormonescrosstalkduringearlyplantdevelopment.JournalofExperimentalBotany.2015;66:2857-2868149.JinZ,PeiY. Physiologicalimplicationsofhydrogensulfideinplants:Pleasantexplorationbehinditsunpleasantodour.OxidativeMedicineandCellularLongevity.2015;397502.DOI:10.1155/2015/397502150.RichardsSL,WilkinsKA,SwarbreckSM,AndersonAA,HabibN,SmithAG,et al.Thehydroxylradicalinplants:Fromseedtoseed.JournalofExperimentalBotany.2015;66:37-46.DOI:10.1093/jxb/eru398151.Diaz-VivancosP,Barba-EspínG,HernándezJA. Elucidatinghormonal/ROSnetworksduringseedgermination:Insightsandperspectives.PlantCellReports.2013;32:1491-1502.DOI:10.1007/s00299-013-1473-7152.PetrovVD,VanBreusegemF. Hydrogenperoxide–acentralhubforinformationflowinplantcells.AoBPlants.2012;2012:pls014.DOI:10.1093/aobpla/pls014153.SchopferP,PlachyC,FrahryG. Releaseofreactiveoxygenintermediates(superoxideradicals,hydrogenperoxide,andhydroxylradicals)andperoxidaseingerminatingradishseedscontrolledbylight,gibberellin,andabscisicacid.PlantPhysiology.2001;125:1591-1602.DOI:10.1104/pp.125.4.1591154.LariguetP,RanochaP,DeMeyerM,BarbierO,PenelC,DunandC. Identificationofahydrogenperoxidesignalingpathwayinthecontroloflight-dependentgerminationinArabidopsis.Planta.2013;238:381-395.DOI:10.1007/s00425-013-1901-5155.MüllerK,HessB,Leubner-MetzgerG. Aroleforreactiveoxygenspeciesinendospermweakening.In:AdkinsS,ShmoreSA,NavieS,editors.Seeds:Biology,DevelopmentandEcology.Wallingford:CABInternational;2007.p. 287-295156.TurnerJF,TurnerDH. Theregulationofcarbohydratemetabolism.AnnualReviewofPlantPhysiology.1975;26:159-186157.RobertKM,DavidAB,KatheleenMB,PeterJK,VictorWR,WeilP. AHarper’sillustratedbiochemistry.BiologicOxidation.2009;12:99-100158.OaikhenaEE,AjibadeGA,AppahJ,BelloM. Dehydrogenaseenzymeactivitiesingerminatingcowpea(Vignaunguiculata(L)Walp).JournalofBiology,AgricultureandHealthcare.2013;3:32-36159.DevlinT. Textbookofbiochemistrywithclinicalcorrelations.Bioenergeticsmitochondriaandoxidative.Metabolism.2011;14:554-555160.JonesJD,BurnethP,ZollmanP. Theglyoxylatecycledoesitfunctioninthedormantoractiveseed.ComparativeBiochemistryandPhysiologyPartB:BiochemistrtyandMolecularBiology.1999;124(2):177-179161.EbukansonGJ,BasseyME. AboutSeedPlants.Kaduna:BarakaPressandPublishersLtd;1992.p. 36-39162.PodestáFE,PlaxtonWC. RegulationofcytosoliccarbonmetabolismingerminatingRicinuscommuniscotyledons.II. Propertiesofphosphoenolpyruvatecarboxylaseandcytosolicpyruvatekinaseassociatedwiththeregulationofglycolysisandnitrogenassimilation.Planta.1994;194:381-387163.AndriotisVME,SaalbachG,WaughR,FieldRA,SmithAM. Maltaseinvolvedinstarchmetabolisminbarleyendospermisencodedbyasinglegene.PLoSOne.2016;11(3):e0151642.DOI:10.1371/journal.pone.0151642164.NandiS,DasG,Sen-MendiS.β-amylaseactivityasanindexforgerminationpotentialinrice.AnnalsofBotany.1995;75:463-467165.HowellKA,NarsairR,CarrollA,IvanovaA,LohseM,UsadelB,et al.Mappingmetabolicandtranscripttemporalswitchesduringgerminationinricehigh-lightsspecifictranscriptionfactorsandtheroleofRNAinstabilityinthegerminationprocess.PlantPhysiology.2009;149:961-980.DOI:10.1104/pp.108.129874166.HowellKA,ChengK,MurchaMW,JenkinLE,MillarAH,WhelanJ. Oxygeninitiationofrespirationandmitochondrialbiogenesisinrice.TheJournalofBiologicalChemistry.2007;282:15619-15619167.HowellKA,MillarAH,WhelanJ. Orderedassemblyofmitochondriaduringricegerminationbeginswithpromitochondrialstructuresrichincomponentoftheproteinimportapparatus.PlantMolecularBiology.2006;60:201-223168.EastmondPJ,GermainV,LangePR,BryceJH,SmithSM,GrahamIA. Postgerminativegrowthandlipidcatabolisminoilseedslackingthegloxylatecycle.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2000;97:5669-5674169.MuscoloA,SidariM,MallamaciC,AttinàE. ChangesingerminationandglyoxylateandrespiratoryenzymesofPinuspineaseedsundervariousabioticstresses.JournalofPlantInteractions.2007;2(4):273-279.DOI:10.1080/17429140701713795170.apReesT. Integrationofpathwaysofsynthesisanddegradationofhexosephosphates.In:PreissJ,editor.TheBiochemistryofPlants.London:AcademicPress.1980;pp. 1-42.171.PerinoC,ComeD. Physiologicalandmetabolicstudyofthegerminationphasesinappleembryo.SeedScienceandTechnology.1991;19:1-14SectionsAuthorinformation1.Introduction2.Theroleofhydrolyticenzymesinseedgermination3.Effectofabioticstressonmetabolicactivitiesduringseedgermination4.Theroleofphytohormonesduringgermination5.Primingstrategytoimproveseedgerminationunderstressfulornon-stressfulconditions6.Therespiratoryreactivationduringseedgermination7.Theroleofglyoxylatecycleinoilseedgermination8.ConclusionReferencesDOWNLOADFORFREEShareCiteCitethischapterTherearetwowaystocitethischapter:1.ChoosecitationstyleSelectstyleVancouverAPAHarvardIEEEMLAChicagoPlaceholderCopytoclipboard2.ChoosecitationstyleSelectformatBibtexRISDownloadcitationViewBookChaptersPublishwithIntechOpenNextchapterFreeRadicalsandAntioxidantSysteminSeedBiologyByFadimeEryılmazPehlivan1,752downloads|3citesAdvertisementWrittenByAwatifS.AliandAlaaeldinA.ElozeiriSubmitted:March20th,2017Reviewed:August21st,2017Published:December6th,2017DOWNLOADFORFREEShareCiteCitethischapterTherearetwowaystocitethischapter:1.ChoosecitationstyleSelectstyleVancouverAPAHarvardIEEEMLAChicagoPlaceholderCopytoclipboard2.ChoosecitationstyleSelectformatBibtexRISDownloadcitation©2017TheAuthor(s).LicenseeIntechOpen.ThischapterisdistributedunderthetermsoftheCreativeCommonsAttribution3.0License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.ContinuereadingfromthesamebookViewAllIntechOpenSeedBiologyEditedbyJoseCarlosJimenez-LopezSeedBiologyEditedbyJoseCarlosJimenez-LopezPublished:December6th,2017Chapter9FreeRadicalsandAntioxidantSysteminSeedBiolo...ByFadimeEryılmazPehlivan1752downloadsChapter10AnatomicalandChemicalInsightsintotheWhiteCl...ByAlbertoAníbalGalussiandMaríaEstherMoya1619downloadsChapter11MorphologicalStudiesonSeedsofScrophulariaceae...ByBalkrishnaGhimire,GoEunChoi,HayanLee,Kweon...1818downloads
延伸文章資訊
- 1SEED GERMINATION - SlideShare
However, primary dormancy is caused by the effects of abscisic acid during seed development. Patt...
- 2Special Issue : Metabolic Processes during Seed Germination
Global climate change is currently affecting environmental conditions and changing the reproducti...
- 3Activation and regulation of primary metabolism during seed ...
During seed dormancy release and germination, starch, oils, and proteins ... changes in the TCA c...
- 4Do seeds metabolize? | Globisens
carbon dioxide generated before and during seed germination, ... What metabolic processes do plan...
- 5Chapter 7
Phases of Germination: I.) Water uptake. By imbibition = a physical process in seeds with a perme...