Elastic collision - Wikipedia

文章推薦指數: 80 %
投票人數:10人

Two-dimensional Elasticcollision FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Collisioninwhichkineticenergyisconserved Thisarticleneedsadditionalcitationsforverification.Pleasehelpimprovethisarticlebyaddingcitationstoreliablesources.Unsourcedmaterialmaybechallengedandremoved.Findsources: "Elasticcollision" – news ·newspapers ·books ·scholar ·JSTOR(September2020)(Learnhowandwhentoremovethistemplatemessage) Aslongasblack-bodyradiation(notshown)doesn'tescapeasystem,atomsinthermalagitationundergoessentiallyelasticcollisions.Onaverage,twoatomsreboundfromeachotherwiththesamekineticenergyasbeforeacollision.Fiveatomsarecoloredredsotheirpathsofmotionareeasiertosee. Inphysics,anelasticcollisionisanencounter(collision)betweentwobodiesinwhichthetotalkineticenergyofthetwobodiesremainsthesame.Inanideal,perfectlyelasticcollision,thereisnonetconversionofkineticenergyintootherformssuchasheat,noise,orpotentialenergy. Duringthecollisionofsmallobjects,kineticenergyisfirstconvertedtopotentialenergyassociatedwitharepulsiveorattractiveforcebetweentheparticles(whentheparticlesmoveagainstthisforce,i.e.theanglebetweentheforceandtherelativevelocityisobtuse),thenthispotentialenergyisconvertedbacktokineticenergy(whentheparticlesmovewiththisforce,i.e.theanglebetweentheforceandtherelativevelocityisacute). Collisionsofatomsareelastic,forexampleRutherfordbackscattering. Ausefulspecialcaseofelasticcollisioniswhenthetwobodieshaveequalmass,inwhichcasetheywillsimplyexchangetheirmomenta. Themolecules—asdistinctfromatoms—ofagasorliquidrarelyexperienceperfectlyelasticcollisionsbecausekineticenergyisexchangedbetweenthemolecules’translationalmotionandtheirinternaldegreesoffreedomwitheachcollision.Atanyinstant,halfthecollisionsare,toavaryingextent,inelasticcollisions(thepairpossesseslesskineticenergyintheirtranslationalmotionsafterthecollisionthanbefore),andhalfcouldbedescribedas“super-elastic”(possessingmorekineticenergyafterthecollisionthanbefore).Averagedacrosstheentiresample,molecularcollisionscanberegardedasessentiallyelasticaslongasPlanck'slawforbidsenergyfrombeingcarriedawaybyblack-bodyphotons. Inthecaseofmacroscopicbodies,perfectlyelasticcollisionsareanidealneverfullyrealized,butapproximatedbytheinteractionsofobjectssuchasbilliardballs. Whenconsideringenergies,possiblerotationalenergybeforeand/orafteracollisionmayalsoplayarole. Contents 1Equations 1.1One-dimensionalNewtonian 1.1.1Examples 1.1.2Derivationofsolution 1.1.3Centerofmassframe 1.2One-dimensionalrelativistic 1.3Relativisticderivationusinghyperbolicfunctions 2Two-dimensional 2.1Two-dimensionalcollisionwithtwomovingobjects 3Seealso 4References 4.1Generalreferences 5Externallinks Equations[edit] One-dimensionalNewtonian[edit] ProfessorWalterLewinexplainingone-dimensionalelasticcollisions Inanelasticcollision,bothmomentumandkineticenergyareconserved.[1]Considerparticles1and2withmassesm1,m2,andvelocitiesu1,u2beforecollision,v1,v2aftercollision.Theconservationofthetotalmomentumbeforeandafterthecollisionisexpressedby:[1] m 1 u 1 + m 2 u 2   =   m 1 v 1 + m 2 v 2 . {\displaystylem_{1}u_{1}+m_{2}u_{2}\=\m_{1}v_{1}+m_{2}v_{2}.} Likewise,theconservationofthetotalkineticenergyisexpressedby:[1] 1 2 m 1 u 1 2 + 1 2 m 2 u 2 2   =   1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . {\displaystyle{\tfrac{1}{2}}m_{1}u_{1}^{2}+{\tfrac{1}{2}}m_{2}u_{2}^{2}\=\{\tfrac{1}{2}}m_{1}v_{1}^{2}+{\tfrac{1}{2}}m_{2}v_{2}^{2}.} Theseequationsmaybesolveddirectlytofind v 1 , v 2 {\displaystylev_{1},v_{2}} when u 1 , u 2 {\displaystyleu_{1},u_{2}} areknown:[2] v 1 = m 1 − m 2 m 1 + m 2 u 1 + 2 m 2 m 1 + m 2 u 2 v 2 = 2 m 1 m 1 + m 2 u 1 + m 2 − m 1 m 1 + m 2 u 2 {\displaystyle{\begin{array}{ccc}v_{1}&=&{\dfrac{m_{1}-m_{2}}{m_{1}+m_{2}}}u_{1}+{\dfrac{2m_{2}}{m_{1}+m_{2}}}u_{2}\\[.5em]v_{2}&=&{\dfrac{2m_{1}}{m_{1}+m_{2}}}u_{1}+{\dfrac{m_{2}-m_{1}}{m_{1}+m_{2}}}u_{2}\end{array}}} Ifbothmassesarethesame,wehaveatrivialsolution: v 1 = u 2 {\displaystylev_{1}=u_{2}} v 2 = u 1 . {\displaystylev_{2}=u_{1}.} Thissimplycorrespondstothebodiesexchangingtheirinitialvelocitiestoeachother.[2] Ascanbeexpected,thesolutionisinvariantunderaddingaconstanttoallvelocities(Galileanrelativity),whichislikeusingaframeofreferencewithconstanttranslationalvelocity.Indeed,toderivetheequations,onemayfirstchangetheframeofreferencesothatoneoftheknownvelocitiesiszero,determinetheunknownvelocitiesinthenewframeofreference,andconvertbacktotheoriginalframeofreference. Examples[edit] Ball1:mass=3kg,velocity=4m/s Ball2:mass=5kg,velocity=−6m/s Aftercollision: Ball1:velocity=−8.5m/s Ball2:velocity=1.5m/s Anothersituation: Elasticcollisionofunequalmasses. Thefollowingillustratethecaseofequalmass, m 1 = m 2 {\displaystylem_{1}=m_{2}} . Elasticcollisionofequalmasses Elasticcollisionofmassesinasystemwithamovingframeofreference Inthelimitingcasewhere m 1 {\displaystylem_{1}} ismuchlargerthan m 2 {\displaystylem_{2}} ,suchasaping-pongpaddlehittingaping-pongballoranSUVhittingatrashcan,theheaviermasshardlychangesvelocity,whilethelightermassbouncesoff,reversingitsvelocityplusapproximatelytwicethatoftheheavyone.[3] Inthecaseofalarge u 1 {\displaystyleu_{1}} ,thevalueof v 1 {\displaystylev_{1}} issmallifthemassesareapproximatelythesame:hittingamuchlighterparticledoesnotchangethevelocitymuch,hittingamuchheavierparticlecausesthefastparticletobouncebackwithhighspeed.Thisiswhyaneutronmoderator(amediumwhichslowsdownfastneutrons,therebyturningthemintothermalneutronscapableofsustainingachainreaction)isamaterialfullofatomswithlightnucleiwhichdonoteasilyabsorbneutrons:thelightestnucleihaveaboutthesamemassasaneutron. Derivationofsolution[edit] Toderivetheaboveequationsfor v 1 , v 2 {\displaystylev_{1},v_{2}} ,rearrangethekineticenergyandmomentumequations: m 1 ( v 1 2 − u 1 2 ) = m 2 ( u 2 2 − v 2 2 ) {\displaystylem_{1}(v_{1}^{2}-u_{1}^{2})=m_{2}(u_{2}^{2}-v_{2}^{2})} m 1 ( v 1 − u 1 ) = m 2 ( u 2 − v 2 ) {\displaystylem_{1}(v_{1}-u_{1})=m_{2}(u_{2}-v_{2})} Dividingeachsideofthetopequationbyeachsideofthebottomequation,andusing a 2 − b 2 ( a − b ) = a + b {\displaystyle{\tfrac{a^{2}-b^{2}}{(a-b)}}=a+b} ,gives: v 1 + u 1 = u 2 + v 2 ⇒ v 1 − v 2 = u 2 − u 1 {\displaystylev_{1}+u_{1}=u_{2}+v_{2}\quad\Rightarrow\quadv_{1}-v_{2}=u_{2}-u_{1}} . Thatis,therelativevelocityofoneparticlewithrespecttotheotherisreversedbythecollision. Nowtheaboveformulasfollowfromsolvingasystemoflinearequationsfor v 1 , v 2 {\displaystylev_{1},v_{2}} ,regarding m 1 , m 2 , u 1 , u 2 {\displaystylem_{1},m_{2},u_{1},u_{2}} asconstants: { v 1 − v 2 = u 2 − u 1 m 1 v 1 + m 2 v 2 = m 1 u 1 + m 2 u 2 . {\displaystyle\left\{{\begin{array}{rcrcc}v_{1}&-&v_{2}&=&u_{2}-u_{1}\\m_{1}v_{1}&+&m_{2}v_{2}&=&m_{1}u_{1}+m_{2}u_{2}.\end{array}}\right.} Once v 1 {\displaystylev_{1}} isdetermined, v 2 {\displaystylev_{2}} canbefoundbysymmetry. Centerofmassframe[edit] Withrespecttothecenterofmass,bothvelocitiesarereversedbythecollision:aheavyparticlemovesslowlytowardthecenterofmass,andbouncesbackwiththesamelowspeed,andalightparticlemovesfasttowardthecenterofmass,andbouncesbackwiththesamehighspeed. Thevelocityofthecenterofmassdoesnotchangebythecollision.Toseethis,considerthecenterofmassattime t {\displaystylet} beforecollisionandtime t ′ {\displaystylet'} aftercollision: x ¯ ( t ) = m 1 x 1 ( t ) + m 2 x 2 ( t ) m 1 + m 2 {\displaystyle{\bar{x}}(t)={\frac{m_{1}x_{1}(t)+m_{2}x_{2}(t)}{m_{1}+m_{2}}}} x ¯ ( t ′ ) = m 1 x 1 ( t ′ ) + m 2 x 2 ( t ′ ) m 1 + m 2 . {\displaystyle{\bar{x}}(t')={\frac{m_{1}x_{1}(t')+m_{2}x_{2}(t')}{m_{1}+m_{2}}}.} Hence,thevelocitiesofthecenterofmassbeforeandaftercollisionare: v x ¯ = m 1 u 1 + m 2 u 2 m 1 + m 2 {\displaystylev_{\bar{x}}={\frac{m_{1}u_{1}+m_{2}u_{2}}{m_{1}+m_{2}}}} v x ¯ ′ = m 1 v 1 + m 2 v 2 m 1 + m 2 . {\displaystylev_{\bar{x}}'={\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}}}.} Thenumeratorsof v x ¯ {\displaystylev_{\bar{x}}} and v x ¯ ′ {\displaystylev_{\bar{x}}'} arethetotalmomentabeforeandaftercollision.Sincemomentumisconserved,wehave v x ¯ = v x ¯ ′ {\displaystylev_{\bar{x}}=v_{\bar{x}}'} . One-dimensionalrelativistic[edit] Accordingtospecialrelativity, p = m v 1 − v 2 c 2 {\displaystylep={\frac{mv}{\sqrt{1-{\frac{v^{2}}{c^{2}}}}}}} wherepdenotesmomentumofanyparticlewithmass,vdenotesvelocity,andcisthespeedoflight. Inthecenterofmomentumframewherethetotalmomentumequalszero, p 1 = − p 2 {\displaystylep_{1}=-p_{2}} p 1 2 = p 2 2 {\displaystylep_{1}^{2}=p_{2}^{2}} m 1 2 c 4 + p 1 2 c 2 + m 2 2 c 4 + p 2 2 c 2 = E {\displaystyle{\sqrt{m_{1}^{2}c^{4}+p_{1}^{2}c^{2}}}+{\sqrt{m_{2}^{2}c^{4}+p_{2}^{2}c^{2}}}=E} p 1 = ± E 4 − 2 E 2 m 1 2 c 4 − 2 E 2 m 2 2 c 4 + m 1 4 c 8 − 2 m 1 2 m 2 2 c 8 + m 2 4 c 8 2 c E {\displaystylep_{1}=\pm{\frac{\sqrt{E^{4}-2E^{2}m_{1}^{2}c^{4}-2E^{2}m_{2}^{2}c^{4}+m_{1}^{4}c^{8}-2m_{1}^{2}m_{2}^{2}c^{8}+m_{2}^{4}c^{8}}}{2cE}}} u 1 = − v 1 . {\displaystyleu_{1}=-v_{1}.} Here m 1 , m 2 {\displaystylem_{1},m_{2}} representtherestmassesofthetwocollidingbodies, u 1 , u 2 {\displaystyleu_{1},u_{2}} representtheirvelocitiesbeforecollision, v 1 , v 2 {\displaystylev_{1},v_{2}} theirvelocitiesaftercollision, p 1 , p 2 {\displaystylep_{1},p_{2}} theirmomenta, c {\displaystylec} isthespeedoflightinvacuum,and E {\displaystyleE} denotesthetotalenergy,thesumofrestmassesandkineticenergiesofthetwobodies. Sincethetotalenergyandmomentumofthesystemareconservedandtheirrestmassesdonotchange,itisshownthatthemomentumofthecollidingbodyisdecidedbytherestmassesofthecollidingbodies,totalenergyandthetotalmomentum.Relativetothecenterofmomentumframe,themomentumofeachcollidingbodydoesnotchangemagnitudeaftercollision,butreversesitsdirectionofmovement. Comparingwithclassicalmechanics,whichgivesaccurateresultsdealingwithmacroscopicobjectsmovingmuchslowerthanthespeedoflight,totalmomentumofthetwocollidingbodiesisframe-dependent.Inthecenterofmomentumframe,accordingtoclassicalmechanics, m 1 u 1 + m 2 u 2 = m 1 v 1 + m 2 v 2 = 0 {\displaystylem_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}={0}\,\!} m 1 u 1 2 + m 2 u 2 2 = m 1 v 1 2 + m 2 v 2 2 {\displaystylem_{1}u_{1}^{2}+m_{2}u_{2}^{2}=m_{1}v_{1}^{2}+m_{2}v_{2}^{2}\,\!} ( m 2 u 2 ) 2 2 m 1 + ( m 2 u 2 ) 2 2 m 2 = ( m 2 v 2 ) 2 2 m 1 + ( m 2 v 2 ) 2 2 m 2 {\displaystyle{\frac{(m_{2}u_{2})^{2}}{2m_{1}}}+{\frac{(m_{2}u_{2})^{2}}{2m_{2}}}={\frac{(m_{2}v_{2})^{2}}{2m_{1}}}+{\frac{(m_{2}v_{2})^{2}}{2m_{2}}}\,\!} ( m 1 + m 2 ) ( m 2 u 2 ) 2 = ( m 1 + m 2 ) ( m 2 v 2 ) 2 {\displaystyle(m_{1}+m_{2})(m_{2}u_{2})^{2}=(m_{1}+m_{2})(m_{2}v_{2})^{2}\,\!} u 2 = − v 2 {\displaystyleu_{2}=-v_{2}\,\!} ( m 1 u 1 ) 2 2 m 1 + ( m 1 u 1 ) 2 2 m 2 = ( m 1 v 1 ) 2 2 m 1 + ( m 1 v 1 ) 2 2 m 2 {\displaystyle{\frac{(m_{1}u_{1})^{2}}{2m_{1}}}+{\frac{(m_{1}u_{1})^{2}}{2m_{2}}}={\frac{(m_{1}v_{1})^{2}}{2m_{1}}}+{\frac{(m_{1}v_{1})^{2}}{2m_{2}}}\,\!} ( m 1 + m 2 ) ( m 1 u 1 ) 2 = ( m 1 + m 2 ) ( m 1 v 1 ) 2 {\displaystyle(m_{1}+m_{2})(m_{1}u_{1})^{2}=(m_{1}+m_{2})(m_{1}v_{1})^{2}\,\!} u 1 = − v 1 {\displaystyleu_{1}=-v_{1}\,\!} Thisagreeswiththerelativisticcalculation u 1 = − v 1 {\displaystyleu_{1}=-v_{1}} ,despiteotherdifferences. OneofthepostulatesinSpecialRelativitystatesthatthelawsofphysics,suchasconservationofmomentum,shouldbeinvariantinallinertialframesofreference.Inageneralinertialframewherethetotalmomentumcouldbearbitrary, m 1 u 1 1 − u 1 2 / c 2 + m 2 u 2 1 − u 2 2 / c 2 = m 1 v 1 1 − v 1 2 / c 2 + m 2 v 2 1 − v 2 2 / c 2 = p T {\displaystyle{\frac{m_{1}\;u_{1}}{\sqrt{1-u_{1}^{2}/c^{2}}}}+{\frac{m_{2}\;u_{2}}{\sqrt{1-u_{2}^{2}/c^{2}}}}={\frac{m_{1}\;v_{1}}{\sqrt{1-v_{1}^{2}/c^{2}}}}+{\frac{m_{2}\;v_{2}}{\sqrt{1-v_{2}^{2}/c^{2}}}}=p_{T}} m 1 c 2 1 − u 1 2 / c 2 + m 2 c 2 1 − u 2 2 / c 2 = m 1 c 2 1 − v 1 2 / c 2 + m 2 c 2 1 − v 2 2 / c 2 = E {\displaystyle{\frac{m_{1}c^{2}}{\sqrt{1-u_{1}^{2}/c^{2}}}}+{\frac{m_{2}c^{2}}{\sqrt{1-u_{2}^{2}/c^{2}}}}={\frac{m_{1}c^{2}}{\sqrt{1-v_{1}^{2}/c^{2}}}}+{\frac{m_{2}c^{2}}{\sqrt{1-v_{2}^{2}/c^{2}}}}=E} Wecanlookatthetwomovingbodiesasonesystemofwhichthetotalmomentumis p T {\displaystylep_{T}} ,thetotalenergyis E {\displaystyleE} anditsvelocity v c {\displaystylev_{c}} isthevelocityofitscenterofmass.Relativetothecenterofmomentumframethetotalmomentumequalszero.Itcanbeshownthat v c {\displaystylev_{c}} isgivenby: v c = p T c 2 E {\displaystylev_{c}={\frac{p_{T}c^{2}}{E}}} Nowthevelocitiesbeforethecollisioninthecenterofmomentumframe u 1 ′ {\displaystyleu_{1}'} and u 2 ′ {\displaystyleu_{2}'} are: u 1 ′ = u 1 − v c 1 − u 1 v c c 2 {\displaystyleu_{1}'={\frac{u_{1}-v_{c}}{1-{\frac{u_{1}v_{c}}{c^{2}}}}}} u 2 ′ = u 2 − v c 1 − u 2 v c c 2 {\displaystyleu_{2}'={\frac{u_{2}-v_{c}}{1-{\frac{u_{2}v_{c}}{c^{2}}}}}} v 1 ′ = − u 1 ′ {\displaystylev_{1}'=-u_{1}'} v 2 ′ = − u 2 ′ {\displaystylev_{2}'=-u_{2}'} v 1 = v 1 ′ + v c 1 + v 1 ′ v c c 2 {\displaystylev_{1}={\frac{v_{1}'+v_{c}}{1+{\frac{v_{1}'v_{c}}{c^{2}}}}}} v 2 = v 2 ′ + v c 1 + v 2 ′ v c c 2 {\displaystylev_{2}={\frac{v_{2}'+v_{c}}{1+{\frac{v_{2}'v_{c}}{c^{2}}}}}} When u 1 ≪ c {\displaystyleu_{1}\llc} and u 2 ≪ c {\displaystyleu_{2}\llc} , p T {\displaystylep_{T}} ≈ m 1 u 1 + m 2 u 2 {\displaystylem_{1}u_{1}+m_{2}u_{2}} v c {\displaystylev_{c}} ≈ m 1 u 1 + m 2 u 2 m 1 + m 2 {\displaystyle{\frac{m_{1}u_{1}+m_{2}u_{2}}{m_{1}+m_{2}}}} u 1 ′ {\displaystyleu_{1}'} ≈ u 1 − v c {\displaystyleu_{1}-v_{c}} ≈ m 1 u 1 + m 2 u 1 − m 1 u 1 − m 2 u 2 m 1 + m 2 = m 2 ( u 1 − u 2 ) m 1 + m 2 {\displaystyle{\frac{m_{1}u_{1}+m_{2}u_{1}-m_{1}u_{1}-m_{2}u_{2}}{m_{1}+m_{2}}}={\frac{m_{2}(u_{1}-u_{2})}{m_{1}+m_{2}}}} u 2 ′ {\displaystyleu_{2}'} ≈ m 1 ( u 2 − u 1 ) m 1 + m 2 {\displaystyle{\frac{m_{1}(u_{2}-u_{1})}{m_{1}+m_{2}}}} v 1 ′ {\displaystylev_{1}'} ≈ m 2 ( u 2 − u 1 ) m 1 + m 2 {\displaystyle{\frac{m_{2}(u_{2}-u_{1})}{m_{1}+m_{2}}}} v 2 ′ {\displaystylev_{2}'} ≈ m 1 ( u 1 − u 2 ) m 1 + m 2 {\displaystyle{\frac{m_{1}(u_{1}-u_{2})}{m_{1}+m_{2}}}} v 1 {\displaystylev_{1}} ≈ v 1 ′ + v c {\displaystylev_{1}'+v_{c}} ≈ m 2 u 2 − m 2 u 1 + m 1 u 1 + m 2 u 2 m 1 + m 2 = u 1 ( m 1 − m 2 ) + 2 m 2 u 2 m 1 + m 2 {\displaystyle{\frac{m_{2}u_{2}-m_{2}u_{1}+m_{1}u_{1}+m_{2}u_{2}}{m_{1}+m_{2}}}={\frac{u_{1}(m_{1}-m_{2})+2m_{2}u_{2}}{m_{1}+m_{2}}}} v 2 {\displaystylev_{2}} ≈ u 2 ( m 2 − m 1 ) + 2 m 1 u 1 m 1 + m 2 {\displaystyle{\frac{u_{2}(m_{2}-m_{1})+2m_{1}u_{1}}{m_{1}+m_{2}}}} Therefore,theclassicalcalculationholdstruewhenthespeedofbothcollidingbodiesismuchlowerthanthespeedoflight(~300millionm/s). Relativisticderivationusinghyperbolicfunctions[edit] Weusetheso-calledparameterofvelocity s {\displaystyles} (usuallycalledtherapidity)toget : v / c = tanh ⁡ ( s ) {\displaystylev/c=\tanh(s)} henceweget 1 − v 2 c 2 = sech ⁡ ( s ) {\displaystyle{\sqrt{1-{\frac{v^{2}}{c^{2}}}}}=\operatorname{sech}(s)} Relativisticenergyandmomentumareexpressedasfollows: E = m c 2 1 − v 2 c 2 = m c 2 cosh ⁡ ( s ) {\displaystyleE={\frac{mc^{2}}{\sqrt{1-{\frac{v^{2}}{c^{2}}}}}}=mc^{2}\cosh(s)} p = m v 1 − v 2 c 2 = m c sinh ⁡ ( s ) {\displaystylep={\frac{mv}{\sqrt{1-{\frac{v^{2}}{c^{2}}}}}}=mc\sinh(s)} Equationssumofenergyandmomentumcollidingmasses m 1 {\displaystylem_{1}} and m 2 {\displaystylem_{2}} ,(velocities v 1 {\displaystylev_{1}} , v 2 {\displaystylev_{2}} , u 1 {\displaystyleu_{1}} , u 2 {\displaystyleu_{2}} correspondtothevelocityparameters s 1 {\displaystyles_{1}} , s 2 {\displaystyles_{2}} , s 3 {\displaystyles_{3}} , s 4 {\displaystyles_{4}} ),afterdividingbyadequatepower c {\displaystylec} areasfollows: m 1 cosh ⁡ ( s 1 ) + m 2 cosh ⁡ ( s 2 ) = m 1 cosh ⁡ ( s 3 ) + m 2 cosh ⁡ ( s 4 ) {\displaystylem_{1}\cosh(s_{1})+m_{2}\cosh(s_{2})=m_{1}\cosh(s_{3})+m_{2}\cosh(s_{4})} m 1 sinh ⁡ ( s 1 ) + m 2 sinh ⁡ ( s 2 ) = m 1 sinh ⁡ ( s 3 ) + m 2 sinh ⁡ ( s 4 ) {\displaystylem_{1}\sinh(s_{1})+m_{2}\sinh(s_{2})=m_{1}\sinh(s_{3})+m_{2}\sinh(s_{4})} anddependentequation,thesumofaboveequations: m 1 e s 1 + m 2 e s 2 = m 1 e s 3 + m 2 e s 4 {\displaystylem_{1}e^{s_{1}}+m_{2}e^{s_{2}}=m_{1}e^{s_{3}}+m_{2}e^{s_{4}}} subtractsquaresbothsidesequations"momentum"from"energy"andusetheidentity cosh 2 ⁡ ( s ) − sinh 2 ⁡ ( s ) = 1 {\displaystyle\cosh^{2}(s)-\sinh^{2}(s)=1} ,aftersimplicityweget: 2 m 1 m 2 ( cosh ⁡ ( s 1 ) cosh ⁡ ( s 2 ) − sinh ⁡ ( s 2 ) sinh ⁡ ( s 1 ) ) = 2 m 1 m 2 ( cosh ⁡ ( s 3 ) cosh ⁡ ( s 4 ) − sinh ⁡ ( s 4 ) sinh ⁡ ( s 3 ) ) {\displaystyle2m_{1}m_{2}(\cosh(s_{1})\cosh(s_{2})-\sinh(s_{2})\sinh(s_{1}))=2m_{1}m_{2}(\cosh(s_{3})\cosh(s_{4})-\sinh(s_{4})\sinh(s_{3}))} fornon-zeromass,usingthehyperbolictrigonometricidentitycosh(a−b)=cosh(a)cosh(b)−sinh(b)sinh(a),weget: cosh ⁡ ( s 1 − s 2 ) = cosh ⁡ ( s 3 − s 4 ) {\displaystyle\cosh(s_{1}-s_{2})=\cosh(s_{3}-s_{4})} asfunctions cosh ⁡ ( s ) {\displaystyle\cosh(s)} isevenwegettwosolutions: s 1 − s 2 = s 3 − s 4 {\displaystyles_{1}-s_{2}=s_{3}-s_{4}} s 1 − s 2 = − s 3 + s 4 {\displaystyles_{1}-s_{2}=-s_{3}+s_{4}} fromthelastequation,leadingtoanon-trivialsolution,wesolve s 2 {\displaystyles_{2}} andsubstituteintothedependentequation,weobtain e s 1 {\displaystylee^{s_{1}}} andthen e s 2 {\displaystylee^{s_{2}}} ,wehave: e s 1 = e s 4 m 1 e s 3 + m 2 e s 4 m 1 e s 4 + m 2 e s 3 {\displaystylee^{s_{1}}=e^{s_{4}}{\frac{m_{1}e^{s_{3}}+m_{2}e^{s_{4}}}{m_{1}e^{s_{4}}+m_{2}e^{s_{3}}}}} e s 2 = e s 3 m 1 e s 3 + m 2 e s 4 m 1 e s 4 + m 2 e s 3 {\displaystylee^{s_{2}}=e^{s_{3}}{\frac{m_{1}e^{s_{3}}+m_{2}e^{s_{4}}}{m_{1}e^{s_{4}}+m_{2}e^{s_{3}}}}} Itisasolutiontotheproblem,butexpressedbytheparametersofvelocity.Returnsubstitutiontogetthesolutionforvelocitiesis: v 1 / c = tanh ⁡ ( s 1 ) = e s 1 − e − s 1 e s 1 + e − s 1 {\displaystylev_{1}/c=\tanh(s_{1})={\frac{e^{s_{1}}-e^{-s_{1}}}{e^{s_{1}}+e^{-s_{1}}}}} v 2 / c = tanh ⁡ ( s 2 ) = e s 2 − e − s 2 e s 2 + e − s 2 {\displaystylev_{2}/c=\tanh(s_{2})={\frac{e^{s_{2}}-e^{-s_{2}}}{e^{s_{2}}+e^{-s_{2}}}}} Substitutetheprevioussolutionsandreplace: e s 3 = c + u 1 c − u 1 {\displaystylee^{s_{3}}={\sqrt{\frac{c+u_{1}}{c-u_{1}}}}} and e s 4 = c + u 2 c − u 2 {\displaystylee^{s_{4}}={\sqrt{\frac{c+u_{2}}{c-u_{2}}}}} ,afterlongtransformation,withsubstituting: Z = ( 1 − u 1 2 / c 2 ) ( 1 − u 2 2 / c 2 ) {\textstyleZ={\sqrt{\left(1-u_{1}^{2}/c^{2}\right)\left(1-u_{2}^{2}/c^{2}\right)}}} weget: v 1 = 2 m 1 m 2 c 2 u 2 Z + 2 m 2 2 c 2 u 2 − ( m 1 2 + m 2 2 ) u 1 u 2 2 + ( m 1 2 − m 2 2 ) c 2 u 1 2 m 1 m 2 c 2 Z − 2 m 2 2 u 1 u 2 − ( m 1 2 − m 2 2 ) u 2 2 + ( m 1 2 + m 2 2 ) c 2 {\displaystylev_{1}={\frac{2m_{1}m_{2}c^{2}u_{2}Z+2m_{2}^{2}c^{2}u_{2}-(m_{1}^{2}+m_{2}^{2})u_{1}u_{2}^{2}+(m_{1}^{2}-m_{2}^{2})c^{2}u_{1}}{2m_{1}m_{2}c^{2}Z-2m_{2}^{2}u_{1}u_{2}-(m_{1}^{2}-m_{2}^{2})u_{2}^{2}+(m_{1}^{2}+m_{2}^{2})c^{2}}}} v 2 = 2 m 1 m 2 c 2 u 1 Z + 2 m 1 2 c 2 u 1 − ( m 1 2 + m 2 2 ) u 1 2 u 2 + ( m 2 2 − m 1 2 ) c 2 u 2 2 m 1 m 2 c 2 Z − 2 m 1 2 u 1 u 2 − ( m 2 2 − m 1 2 ) u 1 2 + ( m 1 2 + m 2 2 ) c 2 {\displaystylev_{2}={\frac{2m_{1}m_{2}c^{2}u_{1}Z+2m_{1}^{2}c^{2}u_{1}-(m_{1}^{2}+m_{2}^{2})u_{1}^{2}u_{2}+(m_{2}^{2}-m_{1}^{2})c^{2}u_{2}}{2m_{1}m_{2}c^{2}Z-2m_{1}^{2}u_{1}u_{2}-(m_{2}^{2}-m_{1}^{2})u_{1}^{2}+(m_{1}^{2}+m_{2}^{2})c^{2}}}} . Two-dimensional[edit] Forthecaseoftwonon-spinningcollidingbodiesintwodimensions,themotionofthebodiesisdeterminedbythethreeconservationlawsofmomentum,kineticenergyandangularmomentum.Theoverallvelocityofeachbodymustbesplitintotwoperpendicularvelocities:onetangenttothecommonnormalsurfacesofthecollidingbodiesatthepointofcontact,theotheralongthelineofcollision.Sincethecollisiononlyimpartsforcealongthelineofcollision,thevelocitiesthataretangenttothepointofcollisiondonotchange.Thevelocitiesalongthelineofcollisioncanthenbeusedinthesameequationsasaone-dimensionalcollision.Thefinalvelocitiescanthenbecalculatedfromthetwonewcomponentvelocitiesandwilldependonthepointofcollision.Studiesoftwo-dimensionalcollisionsareconductedformanybodiesintheframeworkofatwo-dimensionalgas. Two-dimensionalelasticcollision Inacenterofmomentumframeatanytimethevelocitiesofthetwobodiesareinoppositedirections,withmagnitudesinverselyproportionaltothemasses.Inanelasticcollisionthesemagnitudesdonotchange.Thedirectionsmaychangedependingontheshapesofthebodiesandthepointofimpact.Forexample,inthecaseofspherestheangledependsonthedistancebetweenthe(parallel)pathsofthecentersofthetwobodies.Anynon-zerochangeofdirectionispossible:ifthisdistanceiszerothevelocitiesarereversedinthecollision;ifitisclosetothesumoftheradiiofthespheresthetwobodiesareonlyslightlydeflected. Assumingthatthesecondparticleisatrestbeforethecollision,theanglesofdeflectionofthetwoparticles, θ 1 {\displaystyle\theta_{1}} and θ 2 {\displaystyle\theta_{2}} ,arerelatedtotheangleofdeflection θ {\displaystyle\theta} inthesystemofthecenterofmassby[4] tan ⁡ θ 1 = m 2 sin ⁡ θ m 1 + m 2 cos ⁡ θ , θ 2 = π − θ 2 . {\displaystyle\tan\theta_{1}={\frac{m_{2}\sin\theta}{m_{1}+m_{2}\cos\theta}},\qquad\theta_{2}={\frac{{\pi}-{\theta}}{2}}.} Themagnitudesofthevelocitiesoftheparticlesafterthecollisionare: v 1 ′ = v 1 m 1 2 + m 2 2 + 2 m 1 m 2 cos ⁡ θ m 1 + m 2 , v 2 ′ = v 1 2 m 1 m 1 + m 2 sin ⁡ θ 2 . {\displaystylev'_{1}=v_{1}{\frac{\sqrt{m_{1}^{2}+m_{2}^{2}+2m_{1}m_{2}\cos\theta}}{m_{1}+m_{2}}},\qquadv'_{2}=v_{1}{\frac{2m_{1}}{m_{1}+m_{2}}}\sin{\frac{\theta}{2}}.} Two-dimensionalcollisionwithtwomovingobjects[edit] Thefinalxandyvelocitiescomponentsofthefirstballcanbecalculatedas:[5] v 1 x ′ = v 1 cos ⁡ ( θ 1 − φ ) ( m 1 − m 2 ) + 2 m 2 v 2 cos ⁡ ( θ 2 − φ ) m 1 + m 2 cos ⁡ ( φ ) + v 1 sin ⁡ ( θ 1 − φ ) cos ⁡ ( φ + π 2 ) v 1 y ′ = v 1 cos ⁡ ( θ 1 − φ ) ( m 1 − m 2 ) + 2 m 2 v 2 cos ⁡ ( θ 2 − φ ) m 1 + m 2 sin ⁡ ( φ ) + v 1 sin ⁡ ( θ 1 − φ ) sin ⁡ ( φ + π 2 ) {\displaystyle{\begin{aligned}v'_{1x}&={\frac{v_{1}\cos(\theta_{1}-\varphi)(m_{1}-m_{2})+2m_{2}v_{2}\cos(\theta_{2}-\varphi)}{m_{1}+m_{2}}}\cos(\varphi)+v_{1}\sin(\theta_{1}-\varphi)\cos(\varphi+{\tfrac{\pi}{2}})\\[0.8em]v'_{1y}&={\frac{v_{1}\cos(\theta_{1}-\varphi)(m_{1}-m_{2})+2m_{2}v_{2}\cos(\theta_{2}-\varphi)}{m_{1}+m_{2}}}\sin(\varphi)+v_{1}\sin(\theta_{1}-\varphi)\sin(\varphi+{\tfrac{\pi}{2}})\end{aligned}}} wherev1andv2arethescalarsizesofthetwooriginalspeedsoftheobjects,m1andm2aretheirmasses,θ1andθ2aretheirmovementangles,thatis, v 1 x = v 1 cos ⁡ θ 1 , v 1 y = v 1 sin ⁡ θ 1 {\displaystylev_{1x}=v_{1}\cos\theta_{1},\;v_{1y}=v_{1}\sin\theta_{1}} (meaningmovingdirectlydowntotherightiseithera−45°angle,ora315°angle),andlowercasephi(φ)isthecontactangle.(Togetthexandyvelocitiesofthesecondball,oneneedstoswapallthe'1'subscriptswith'2'subscripts.) Thisequationisderivedfromthefactthattheinteractionbetweenthetwobodiesiseasilycalculatedalongthecontactangle,meaningthevelocitiesoftheobjectscanbecalculatedinonedimensionbyrotatingthexandyaxistobeparallelwiththecontactangleoftheobjects,andthenrotatedbacktotheoriginalorientationtogetthetruexandycomponentsofthevelocities[6][7][8][9][10][11] Inanangle-freerepresentation,thechangedvelocitiesarecomputedusingthecentersx1andx2atthetimeofcontactas v 1 ′ = v 1 − 2 m 2 m 1 + m 2   ⟨ v 1 − v 2 , x 1 − x 2 ⟩ ‖ x 1 − x 2 ‖ 2   ( x 1 − x 2 ) , v 2 ′ = v 2 − 2 m 1 m 1 + m 2   ⟨ v 2 − v 1 , x 2 − x 1 ⟩ ‖ x 2 − x 1 ‖ 2   ( x 2 − x 1 ) {\displaystyle{\begin{aligned}\mathbf{v}'_{1}&=\mathbf{v}_{1}-{\frac{2m_{2}}{m_{1}+m_{2}}}\{\frac{\langle\mathbf{v}_{1}-\mathbf{v}_{2},\,\mathbf{x}_{1}-\mathbf{x}_{2}\rangle}{\|\mathbf{x}_{1}-\mathbf{x}_{2}\|^{2}}}\(\mathbf{x}_{1}-\mathbf{x}_{2}),\\\mathbf{v}'_{2}&=\mathbf{v}_{2}-{\frac{2m_{1}}{m_{1}+m_{2}}}\{\frac{\langle\mathbf{v}_{2}-\mathbf{v}_{1},\,\mathbf{x}_{2}-\mathbf{x}_{1}\rangle}{\|\mathbf{x}_{2}-\mathbf{x}_{1}\|^{2}}}\(\mathbf{x}_{2}-\mathbf{x}_{1})\end{aligned}}} wheretheanglebracketsindicatetheinnerproduct(ordotproduct)oftwovectors. Seealso[edit] Collision Inelasticcollision Coefficientofrestitution References[edit] ^abcSerway,RaymondA.(5March2013).Physicsforscientistsandengineerswithmodernphysics.Jewett,JohnW.,Peroomian,Vahé.(Ninth ed.).Boston,MA.p. 257.ISBN 978-1-133-95405-7.OCLC 802321453. ^abSerway,RaymondA.(5March2013).Physicsforscientistsandengineerswithmodernphysics.Jewett,JohnW.,Peroomian,Vahé.(Ninth ed.).Boston,MA.p. 258.ISBN 978-1-133-95405-7.OCLC 802321453. ^Serway,RaymondA.(5March2013).Physicsforscientistsandengineerswithmodernphysics.Jewett,JohnW.,Peroomian,Vahé.(Ninth ed.).Boston,MA.p. 258-9.ISBN 978-1-133-95405-7.OCLC 802321453. ^Landau,L.D.;Lifshitz,E.M.(1976).Mechanics(3rd ed.).PergamonPress.p. 46.ISBN 0-08-021022-8. ^Craver,WilliamE."ElasticCollisions."Williamecraver.wix.com.Wix.com,13Aug.2013.Web.13Aug.2013.. ^Parkinson,Stephen(1869)"AnElementaryTreatiseonMechanics"(4thed.)p.197.London.MacMillan ^Love,A.E.H.(1897)"PrinciplesofDynamics"p.262.Cambridge.CambridgeUniversityPress ^Routh,EdwardJ.(1898)"ATreatiseonDynamicsofaParticle"p.39.Cambridge.CambridgeUniversityPress ^Glazebrook,RichardT.(1911)"Dynamics"(2nded.)p.217.Cambridge.CambridgeUniversityPress ^Osgood,WilliamF.(1949)"Mechanics"p.272.London.MacMillan ^Stephenson,ReginaldJ.(1952)"MechanicsandPropertiesofMatter"p.40.NewYork.Wiley Generalreferences[edit] Raymond,DavidJ."10.4.1Elasticcollisions".Aradicallymodernapproachtointroductoryphysics:Volume1:Fundamentalprinciples.Socorro,NM:NewMexicoTechPress.ISBN 978-0-9830394-5-7. Externallinks[edit] RigidBodyCollisionResolutioninthreedimensionsincludingaderivationusingtheconservationlaws VNERigidBodyCollisionSimulationSmallOpenSource3Denginewitheasy-to-understandimplementationofelasticcollisionsinC Visualize2-DCollisionFreesimulationof2-particlecollisionwithuser-adjustablecoefficientofrestitutionandparticlevelocities(RequiresAdobeShockwave) 2-DimensionalElasticCollisionswithoutTrigonometryExplanationofhowtocalculate2-dimensionalelasticcollisionsusingvectors BouncescopeFreesimulatorofelasticcollisionsofdozensofuser-configurableobjects ManagingballvsballcollisionwithFlashFlashscripttomanageelasticcollisionsamonganynumberofspheres Elasticcollisionderivation Elasticcollisionformuladerivationifoneofballsvelocityis0 Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Elastic_collision&oldid=1080313815" Categories:ClassicalmechanicsCollisionHiddencategories:ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataArticlesneedingadditionalreferencesfromSeptember2020AllarticlesneedingadditionalreferencesArticlescontainingvideoclips Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Languages العربيةবাংলাCatalàDanskEspañolEuskaraفارسیFrançais한국어ItalianoעבריתKreyòlayisyenМакедонскиNorsknynorskPolskiPortuguêsРусскийසිංහලSimpleEnglishSlovenščinaSuomiТатарча/tatarçaTürkçeУкраїнськаTiếngViệt中文 Editlinks



請為這篇文章評分?