Utility maximization problem - Wikipedia
文章推薦指數: 80 %
Utility maximization is an important concept in consumer theory as it shows how consumers decide to allocate their income. Because consumers are rational, they ... Utilitymaximizationproblem FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Problemofallocationofmoneybyconsumersinordertomostbenefitthemselves Foralesstechnicalintroduction,seeUtility. Thisarticlehasmultipleissues.Pleasehelpimproveitordiscusstheseissuesonthetalkpage.(Learnhowandwhentoremovethesetemplatemessages) Thisarticleincludesalistofgeneralreferences,butitlackssufficientcorrespondinginlinecitations.Pleasehelptoimprovethisarticlebyintroducingmoreprecisecitations.(August2010)(Learnhowandwhentoremovethistemplatemessage) Thisarticleneedsadditionalcitationsforverification.Pleasehelpimprovethisarticlebyaddingcitationstoreliablesources.Unsourcedmaterialmaybechallengedandremoved.Findsources: "Utilitymaximizationproblem" – news ·newspapers ·books ·scholar ·JSTOR(March2011)(Learnhowandwhentoremovethistemplatemessage) (Learnhowandwhentoremovethistemplatemessage) UtilitymaximizationwasfirstdevelopedbyutilitarianphilosophersJeremyBenthamandJohnStuartMill.Inmicroeconomics,theutilitymaximizationproblemistheproblemconsumersface:"HowshouldIspendmymoneyinordertomaximizemyutility?"Itisatypeofoptimaldecisionproblem.Itconsistsofchoosinghowmuchofeachavailablegoodorservicetoconsume,takingintoaccountaconstraintontotalspending(income),thepricesofthegoodsandtheirpreferences. Utilitymaximizationisanimportantconceptinconsumertheoryasitshowshowconsumersdecidetoallocatetheirincome.Becauseconsumersarerational,theyseektoextractthemostbenefitforthemselves.However,duetoboundedrationalityandotherbiases,consumerssometimespickbundlesthatdonotnecessarilymaximizetheirutility.Theutilitymaximizationbundleoftheconsumerisalsonotsetandcanchangeovertimedependingontheirindividualpreferencesofgoods,pricechangesandincreasesordecreasesinincome. Contents 1Basicsetup 1.11)Walras'sLaw 1.1.1Preferencesoftheconsumer 1.1.1.1Complete 1.1.1.2Transitive 1.1.1.3Monotone 1.22)'Bangforbuck' 1.33)Budgetconstraint 1.44)Checkfornegativity 2Atechnicalrepresentation 3Utilitymaximisationofperfectcompliments 4Utilitymaximisationofperfectsubstitutes 5Reactiontochangesinprices 6Reactiontochangesinincome 7Boundedrationality 8Relatedconcepts 9Seealso 10References 11Externallinks Basicsetup[edit] Forutilitymaximizationtherearefourbasicstepsprocesstoderiveconsumerdemandandfindtheutilitymaximizingbundleoftheconsumergivenprices,income,andpreferences. 1)CheckifWalras'slawissatisfied 2)'Bangforbuck' 3)thebudgetconstraint 4)Checkfornegativity 1)Walras'sLaw[edit] Walras'slawstatesthatifaconsumerspreferencesarecomplete,monotoneandtransitivethentheoptimaldemandwilllieonthebudgetline.[1] Preferencesoftheconsumer[edit] Forautilityrepresentationtoexistthepreferencesoftheconsumermustbecompleteandtransitive(necessaryconditions).[2] Complete[edit] Completenessofpreferencesindicatesthatallbundlesintheconsumptionsetcanbecomparedbytheconsumer.Forexample,iftheconsumerhas3bundlesA,BandCthen; A ≽ {\displaystyle\succcurlyeq} B,A ≽ {\displaystyle\succcurlyeq} C,B ≽ {\displaystyle\succcurlyeq} A,B ≽ {\displaystyle\succcurlyeq} C,C ≽ {\displaystyle\succcurlyeq} B,C ≽ {\displaystyle\succcurlyeq} A,A ≽ {\displaystyle\succcurlyeq} A,B ≽ {\displaystyle\succcurlyeq} B,C ≽ {\displaystyle\succcurlyeq} C.Therefore,theconsumerhascompletepreferencesastheycancompareeverybundle. Transitive[edit] Transitivitystatesthatindividualspreferencesareconsistentacrossthebundles. therefore,iftheconsumerweaklyprefersAoverB(A ≽ {\displaystyle\succcurlyeq} B)andB ≽ {\displaystyle\succcurlyeq} CthismeansthatA ≽ {\displaystyle\succcurlyeq} C(AisweaklypreferredtoC) Monotone[edit] Forapreferencerelationtobemonotoneincreasingthequantityofbothgoodsshouldmaketheconsumerstrictlybetteroff(increasetheirutility),andincreasingthequantityofonegoodholdingtheotherquantityconstantshouldnotmaketheconsumerworseoff(sameutility). Thepreference ≽ {\displaystyle\succcurlyeq} ismonotoneifanyonlyif; 1) ( x + ϵ , y ) ≽ ( x , y ) {\displaystyle(x+\epsilon,y)\succcurlyeq(x,y)} 2) ( x , y + ϵ ) ≽ ( x , y ) {\displaystyle(x,y+\epsilon)\succcurlyeq(x,y)} 3) ( x + ϵ , y + ϵ ) ≻ ( x , y ) {\displaystyle(x+\epsilon,y+\epsilon)\succ(x,y)} where ϵ {\displaystyle\epsilon} >0 2)'Bangforbuck'[edit] Bangforbuckisamainconceptinutilitymaximizationandconsistsoftheconsumerwantingtogetthebestvaluefortheirmoney.IfWalras'slawhasbeensatisfied,theoptimalsolutionoftheconsumerliesatthepointwherethebudgetlineandoptimalindifferencecurveintersect,thisiscalledthetangencycondition.[3]Tofindthispoint,differentiatetheutilityfunctionwithrespecttoxandytofindthemarginalutilities,thendividebytherespectivepricesofthegoods. M U x / p x = M U y / p y {\displaystyleMU_{x}/p_{x}=MU_{y}/p_{y}} Thiscanbesolvedtofindtheoptimalamountofgoodxorgoody. 3)Budgetconstraint[edit] Thebasicsetupofthebudgetconstraintoftheconsumeris: p x x + p y y ≤ I {\displaystylep_{x}x+p_{y}y\leqI} DuetoWalras'slawbeingsatisfied: p x x + p y y = I {\displaystylep_{x}x+p_{y}y=I} Thetangencyconditionisthensubstitutedintothistosolvefortheoptimalamountoftheothergood. 4)Checkfornegativity[edit] Figure1:Thisrepresentswheretheutilitymaximizingbundleiswhenthedemandforonegoodisnegative Negativitymustbecheckedforastheutilitymaximizationproblemcangiveananswerwheretheoptimaldemandofagoodisnegative,whichinrealityisnotpossibleasthisisoutsidethedomain.Ifthedemandforonegoodisnegative,theoptimalconsumptionbundlewillbewhere0ofthisgoodisconsumedandallincomeisspentontheothergood(acornersolution).Seefigure1foranexamplewhenthedemandforgoodxisnegative. Atechnicalrepresentation[edit] Supposetheconsumer'sconsumptionset,ortheenumerationofallpossibleconsumptionbundlesthatcouldbeselectediftherewereabudgetconstraint. Theconsumptionset= R + n . {\displaystyle\mathbb{R}_{+}^{n}\.} (asetofpositiverealnumbers,theconsumercannotpreferencenegativeamountofcommodities). x ∈ R + n . {\displaystylex\in\mathbb{R}_{+}^{n}\.} Supposealsothatthepricevector(p)ofthencommoditiesispositive, Figure2:Thisshowstheoptimalamountsofgoodsxandythatmaximiseutilitygivenabudgetconstraint. p ∈ R + n , {\displaystylep\in\mathbb{R}_{+}^{n}\,} andthattheconsumer'sincomeis w {\displaystylew} ;thenthesetofallaffordablepackages,thebudgetsetis, B ( p , I ) = { x ∈ R + n | Σ i = 1 n p i x i ≤ I } , {\displaystyleB(p,I)=\{x\in\mathbb{R}_{+}^{n}|\mathbb{\Sigma}_{i=1}^{n}p_{i}x_{i}\leqI\}\,} Theconsumerwouldliketobuythebestaffordablepackageofcommodities. Itisassumedthattheconsumerhasanordinalutilityfunction,calledu.Itisareal-valuedfunctionwithdomainbeingthesetofallcommoditybundles,or u : R + n → R + . {\displaystyleu:\mathbb{R}_{+}^{n}\rightarrow\mathbb{R}_{+}\.} Thentheconsumer'soptimalchoice x ( p , w ) {\displaystylex(p,w)} istheutilitymaximizingbundleofallbundlesinthebudgetsetif x ∈ B ( p , w ) {\displaystylex\inB(p,w)} thentheconsumersoptimaldemandfunctionis: x ( p , I ) = { x ∈ B ( p , I ) | U ( x ) ≥ U ( y ) ∀ y ∈ B ( p , I ) } {\displaystylex(p,I)=\{x\inB(p,I)|U(x)\geqU(y)\forally\inB(p,I)\}} Finding x ( p , I ) {\displaystylex(p,I)} istheutilitymaximizationproblem. Ifuiscontinuousandnocommoditiesarefreeofcharge,then x ( p , I ) {\displaystylex(p,I)} exists,[4]butitisnotnecessarilyunique.Ifthepreferencesoftheconsumerarecomplete,transitiveandstrictlyconvexthenthedemandoftheconsumercontainsauniquemaximiserforallvaluesofthepriceandwealthparameters.Ifthisissatisfiedthen x ( p , I ) {\displaystylex(p,I)} iscalledtheMarshalliandemandfunction.Otherwise, x ( p , I ) {\displaystylex(p,I)} isset-valuedanditiscalledtheMarshalliandemandcorrespondence. Utilitymaximisationofperfectcompliments[edit] U=min{x,y} Figure3:Thisshowstheutilitymaximisationproblemwithaminimumutilityfunction. Foraminimumfunctionwithgoodsthatareperfectcompliments,thesamestepscannotbetakentofindtheutilitymaximisingbundleasitisanondifferentiablefunction.Therefore,intuitionmustbeused.Theconsumerwillmaximisetheirutilityatthekinkpointinthehighestindifferencecurvethatintersectsthebudgetlinewherex=y.[3]Thisisintuition,astheconsumerisrationalthereisnopointtheconsumerconsumingmoreofonegoodandnottheothergoodastheirutilityistakenattheminimumofthetwo(theyhavenogaininutilityfromthisandwouldbewastingtheirincome).Seefigure3. Utilitymaximisationofperfectsubstitutes[edit] U=x+y Forautilityfunctionwithperfectsubstitutes,theutilitymaximisingbundlecanbefoundbydifferentiationorsimplybyinspection.SupposeaconsumerfindslisteningtoAustralianrockbandsAC/DCandTameImpalaperfectsubstitutes.ThismeansthattheyarehappytospendallafternoonlisteningtoonlyAC/DC,oronlyTameImpala,orthree-quartersAC/DCandone-quarterTameImpala,oranycombinationofthetwobandsinanyamount.Therefore,theconsumer'soptimalchoiceisdeterminedentirelybytherelativepricesoflisteningtothetwoartists.IfattendingaTameImpalaconcertischeaperthanattendingtheAC/DCconcert,theconsumerchoosestoattendtheTameImpalaconcert,andviceversa.Ifthetwoconcertpricesarethesame,theconsumeriscompletelyindifferentandmayflipacointodecide.Toseethismathematically,differentiatetheutilityfunctiontofindthattheMRSisconstant-thisisthetechnicalmeaningofperfectsubstitutes.Asaresultofthis,thesolutiontotheconsumer'sconstrainedmaximizationproblemwillnot(generally)beaninteriorsolution,andassuchonemustchecktheutilitylevelintheboundarycases(spendentirebudgetongoodx,spendentirebudgetongoody)toseewhichisthesolution.Thespecialcaseiswhenthe(constant)MRSequalsthepriceratio(forexample,bothgoodshavethesameprice,andsamecoefficientsintheutilityfunction).Inthiscase,anycombinationofthetwogoodsisasolutiontotheconsumerproblem. Reactiontochangesinprices[edit] Foragivenlevelofrealwealth,onlyrelativepricesmattertoconsumers,notabsoluteprices.Ifconsumersreactedtochangesinnominalpricesandnominalwealthevenifrelativepricesandrealwealthremainedunchanged,thiswouldbeaneffectcalledmoneyillusion.Themathematicalfirstorderconditionsforamaximumoftheconsumerproblemguaranteethatthedemandforeachgoodishomogeneousofdegreezerojointlyinnominalpricesandnominalwealth,sothereisnomoneyillusion. Whenthepricesofgoodschange,theoptimalconsumptionofthesegoodswilldependonthesubstitutionandincomeeffects.Thesubstitutioneffectsaysthatifthedemandforbothgoodsishomogeneous,whenthepriceofonegooddecreases(holdingthepriceoftheothergoodconstant)theconsumerwillconsumemoreofthisgoodandlessoftheotherasitbecomesrelativelycheeper.Thesamegoesifthepriceofonegoodincreases,consumerswillbuylessofthatgoodandmoreoftheother.[5] Theincomeeffectoccurswhenthechangeinpricesofgoodscauseachangeinincome.Ifthepriceofonegoodrises,thenincomeisdecreased(morecostlythanbeforetoconsumethesamebundle),thesamegoesifthepriceofagoodfalls,incomeisincreased(cheepertoconsumethesamebundle,theycanthereforeconsumemoreoftheirdesiredcombinationofgoods).[5] Reactiontochangesinincome[edit] Figure5:Thisshowshowtheoptimalbundleofaconsumerchangeswhentheirincomeisincreased. Iftheconsumersincomeisincreasedtheirbudgetlineisshiftedoutwardsandstheynowhavemoreincometospendoneithergoodx,goody,orbothdependingontheirpreferencesforeachgood.ifbothgoodsxandywerenormalgoodsthenconsumptionofbothgoodswouldincreaseandtheoptimalbundlewouldmovefromAtoC(seefigure5).Ifeitherxorywereinferiorgoods,thendemandforthesewoulddecreaseasincomerises(theoptimalbundlewouldbeatpointBorC).[6] Boundedrationality[edit] forfurtherinformationsee:Boundedrationality Inpractice,aconsumermaynotalwayspickanoptimalbundle.Forexample,itmayrequiretoomuchthoughtortoomuchtime.Boundedrationalityisatheorythatexplainsthisbehaviour.Examplesofalternativestoutilitymaximisationduetoboundedrationalityare;satisficing,eliminationbyaspectsandthementalaccountingheuristic. Thesatisficingheuristiciswhenaconsumerdefinesanaspirationlevelandlooksuntiltheyfindanoptionthatsatisfiesthis,theywilldeemthisoptiongoodenoughandstoplooking.[7] Eliminationbyaspectsisdefiningalevelforeachaspectofaproducttheywantandeliminatingallotheroptionsthatdon'tmeetthisrequiremente.g.priceunder$100,colouretc.untilthereisonlyoneproductleftwhichisassumedtobetheproducttheconsumerwillchoose.[8] Thementalaccountingheuristic:Inthisstrategyitisseenthatpeopleoftenassignsubjectivevaluestotheirmoneydependingontheirpreferencesfordifferentthings.Apersonwilldevelopmentalaccountsfordifferentexpenses,allocatetheirbudgetwithinthese,thentrytomaximisetheirutilitywithineachaccount.[9] Relatedconcepts[edit] TherelationshipbetweentheutilityfunctionandMarshalliandemandintheutilitymaximisationproblemmirrorstherelationshipbetweentheexpenditurefunctionandHicksiandemandintheexpenditureminimisationproblem.Inexpenditureminimisationtheutilitylevelisgivenandwellasthepricesofgoods,theroleoftheconsumeristofindaminimumlevelofexpenditurerequiredtoreachthisutilitylevel. Theutilitariansocialchoiceruleisarulethatsaysthatsocietyshouldchoosethealternativethatmaximizesthesumofutilities.Whileutility-maximizationisdonebyindividuals,utility-summaximizationisdonebysociety. Seealso[edit] Choicemodelling Expenditureminimisationproblem Optimaldecision Substitutioneffect Utilityfunction Lawofdemand Marginalutility References[edit] ^Levin,Jonothan(2004).Consumertheory.Stanforduniversity.pp. 4–6. ^Salcedo,Bruno(2017).Utilityrepresentations.Cornelluniversity.pp. 18–19. ^abBoard,Simon(2009).Utilitymaximizationproblem.Departmentofeconomics,UCLA.pp. 10–17. ^Choice,preferenceandUtility.Princetonuniversitypress.n.d.p. 14. ^abUtilityMaximizationandDemand.UniversityofMinnesotalibrary.2011.pp. chapter7.2. ^RiceUniversity(n.d.)."Howchangesinincomeandpricesaffectconsumptionchoices".Pressbooks.Retrieved22April2021.{{citeweb}}:CS1maint:url-status(link) ^Wheeler,Gregory(2018).boundedrationality.StanfordEncyclopediaofPhilosophy. ^"Elimination-By-AspectsModel".MonashUniversity.2018.Retrieved20April2021.{{citeweb}}:CS1maint:url-status(link) ^"Whydowethinklessaboutsomepurchasesthanothers?".Thedecisionlab.2021.Retrieved20April2021.{{citeweb}}:CS1maint:url-status(link) Externallinks[edit] AnatomyofCobb-DouglasTypeUtilityFunctionsin3D Rulesformaximisingutilitybylumenlearning Anexampleofutilitymaximisation UtilitymaximisationdefinitionbyEconomicshelp ApplicationofautilityfunctionbyInvestopedia DefinitionofsubstitutegoodsbyInvestopedia Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Utility_maximization_problem&oldid=1098390878" Categories:OptimaldecisionsUtilityMathematicaloptimizationBusinessandeconomicsportalHiddencategories:CS1maint:url-statusArticleswithshortdescriptionShortdescriptionwithemptyWikidatadescriptionArticleslackingin-textcitationsfromAugust2010Allarticleslackingin-textcitationsArticlesneedingadditionalreferencesfromMarch2011AllarticlesneedingadditionalreferencesArticleswithmultiplemaintenanceissues Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Languages 한국어ລາວ日本語РусскийУкраїнськаTiếngViệt中文 Editlinks
延伸文章資訊
- 1The Utility Maximization Rule - YouTube
- 2Maximizing Utility with Calculus - YouTube
- 3Utility maximization problem - Wikipedia
Utility maximization is an important concept in consumer theory as it shows how consumers decide ...
- 4Utility maximization: equalizing marginal utility per dollar (video)
- 5Utility maximization example - YouTube