Dynamics of auditory working memory - Frontiers

文章推薦指數: 80 %
投票人數:10人

Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) totalviews ViewArticleImpact SHAREON Abstract Introduction AuditoryWorkingMemoryforNon-spatialSoundFeatures AuditoryWorkingMemoryforSpatialSoundFeatures DirectComparisonsofAuditorySpatialVersusNon-spatialWorkingMemory Summary ConflictofInterestStatement Acknowledgment References Peoplealsolookedat MINIREVIEWarticle Front.Psychol.,11May2015Sec.Cognition https://doi.org/10.3389/fpsyg.2015.00613 Dynamicsofauditoryworkingmemory JochenKaiser* InstituteofMedicalPsychology,GoetheUniversity,FrankfurtamMain,Germany Workingmemorydenotestheabilitytoretainstimuliinmindthatarenolongerphysicallypresentandtoperformmentaloperationsonthem.Electro-andmagnetoencephalographyallowinvestigatingtheshort-termmaintenanceofacousticstimuliatahightemporalresolution.Studiesinvestigatingworkingmemoryfornon-spatialandspatialauditoryinformationhavesuggesteddifferentialrolesofregionsalongtheputativeauditoryventralanddorsalstreams,respectively,intheprocessingofthedifferentsoundproperties.Analysesofevent-relatedpotentialshaveshownsustained,memoryload-dependentdeflectionsovertheretentionperiods.Thetopographyofthesewavessuggestedaninvolvementofmodality-specificsensorystorageregions.Spectralanalysishasyieldedinformationaboutthetemporaldynamicsofauditoryworkingmemoryprocessingofindividualstimuli,showingactivationpeaksduringthedelayphasewhosetimingwasrelatedtotaskperformance.Coherenceatdifferentfrequencieswasenhancedbetweenfrontalandsensorycortex.Insummary,auditoryworkingmemoryseemstorelyonthedynamicinterplaybetweenfrontalexecutivesystemsandsensoryrepresentationregions. Introduction Workingmemoryallowsthetemporarystorageofrelevantinformationanditstask-dependentmanipulation.Itisinvolvedinmanyhighercognitivefunctionsandthusconstitutesafundamentalfunctionofourbrain.Whilemostpreviousresearchhasfocusedonvisualworkingmemory(Drewetal.,2006;LuckandVogel,2013),lessisknownabouttheneuralcorrelatesofauditoryworkingmemory(AWM).Thisbriefreviewsummarizessomeofthemainfindingsonauditoryshort-termorworkingmemory(bothtermswillbeusedinterchangeably)studiesinhumans.Thefocuswillbeonthedynamicsofworkingmemory-relatedprocesses;thereforethereviewislimitedtostudiesassessingnon-invasivemeasuresofneuralactivationwithahightemporalresolution,i.e.,electro-ormagnetoencephalography(EEGandMEG).Mostofthisworkhasconsideredevent-relatedpotentials(ERPs),butsomeinvestigationshavelookedatspectralactivityandatoscillatorycouplingbetweencorticalsources. Evidencefrombothtypesofstudiesspeaksagainsttheexistenceofasingleworkingmemorystoreforauditoryinformation.Instead,activationpatternsvarywiththetypeofmemorizedauditoryinformation,suggestingthatworkingmemoryinvolvesthesamesystemsthatunderlieperceptualprocessing.Soundfeature-specificactivationdifferenceswereparticularlyobviousforcomparisonsbetweensoundidentityandlocation,i.e.,stimulusparametersthatareprocessedintopographicallydistinctcorticalregions(RauscheckerandTian,2000). AuditoryWorkingMemoryforNon-spatialSoundFeatures Theshort-termretentionofpitchelicitsaload-dependentfrontalnegativewave.Usingnon-verbal,pure-tonestimulitoavoidphonologicalorsemanticprocessing,memoryloadeffectsweretestedbypresentingeitherone200-mspuretonetobothearsortwodifferentstimulitoeachear(Guimondetal.,2011).Asustainedanteriornegativewave(SAN)duringthe2-sdelayintervalshowedhigheramplitudesfortwothanoneto-be-rememberedstimulus.ControlexperimentsconfirmedtheroleoftheSANforshort-termmemoryprocessingbyexcludingameresensory-drivenresponseorinternalrehearsal.Comparisonwithavisualshort-termmemoryparadigmshowedthattheSANduringretentionwasspecifictotheauditorytask(Lefebvreetal.,2013).Amemoryload-sensitiveSANwasalsoobservedduringtheretentionofsoundsdifferingintimbreinsteadofpitch(Noldenetal.,2013).ThecorticalgeneratorsofthiswavewereassessedwithMEG.DuringAWMfortonesequences,sourcelocalizationrevealedmemoryload-dependentactivationsinbilateralsuperiortemporal,superiorparietalandfrontalcortex(Grimaultetal.,2009).Astudyinvolvingthecomparisonoftonesequencesofdifferentlengthsidentifiedseveralbrainareaswhoseactivationcorrelatedwiththenumberofsuccessfullymemorizeditems(Grimaultetal.,2014).Theseincludedbilateralsuperior/middletemporalcortexandseveralregionsinbilateralfrontalcortex.ThissourcetopographypartlyoverlappedwithfMRIresults(Gaabetal.,2003;Koelschetal.,2009)andsuggestedthattheretentionofsimpleacousticfeaturesinvolvesthesustainedactivationofsensoryrepresentationsinadditiontofrontalexecutiveregions. ThefrontalnegativityisarobustphenomenonthatwasalsoobservedinERPstudiesemployingverbalsoundsthatmayelicitsemanticprocessingbeyondlow-levelacousticstorage.Asustainedfrontalnegativeshiftwaslargerforaurallythanvisuallypresenteddigits(Langetal.,1992).Similarly,amemoryload-dependentfrontalnegativitywaslargerforspokenthanwrittensyllables(Ruchkinetal.,1997),whereasvisualstimuligaverisetoaposteriorpositivity.TheroleoftheprefrontalcortexforAWMwasfurthersupportedbyastudyinpatientswithfrontalcortexlesions.TheyshowedreducedactivationsbothinauditoryareasandprefrontalcortexandfailedtoattenuatetheirresponsestodistractingtonesduringthedelayperiodofanAWMtask(ChaoandKnight,1998). WhileERPinvestigationsfocusontime-lockedbroad-bandactivity,spectralanalysisistypicallyperformedonsingle-trialbasis,maintainingactivitythatisnotphase-lockedtoadefinedevent.AnalysesofspectralactivityindifferentfrequencybandsmayinformaboutaspectsofprocessingnotcapturedbyERPs.Forexample,activityinthealphaband(8–12Hz)hasbeenrelatedtoactiveinhibitionofinterferingprocessing(Klimeschetal.,2007;JensenandMazaheri,2010),andgammaactivity(>30Hz)hasbeenlinkedtoobjectrepresentations,attentionandmemory(KaiserandLutzenberger,2003;Jensenetal.,2007).Moreover,coherenceorphasesynchronizationcalculatedonthebasisofspectralsignalsprovideinformationaboutcortico-corticalinteractions. IncreasesofspectralpowerandsynchronizationoverfrontalcortexcharacterizedAWMfordifferenttypesofnon-spatialsounds.DuringthemaintenancephaseofanAWMtaskrequiringthememorizationofsounddurations,wefoundincreasedgammaactivity(70–80Hz)overprefrontalcortex(Kaiseretal.,2007b).Asimilarresultwasobtainedforartificialsyllablesvaryinginvoiceonsettimeandformantstructure.Heregammaactivity(65–70Hz)wasincreasedoverleftanteriortemporal/inferiorfrontalcortex(Kaiseretal.,2003).Gammacoherencebetweentheputativesensoryrepresentationregionsandprefrontalcortexshowedasustainedincreaseacrossthedelayphase(Kaiseretal.,2005),possiblyreflectingenhancedcross-talkbetweenstorageandexecutivenetworksunderlyingstimulusmaintenance.RightfrontalalphaandrighttemporalbetaactivitycorrelatedpositivelywithmemoryloadduringthedelayperiodofaSternberg-typetaskusingnaturalsyllables(Leibergetal.,2006b).Thealphaincreasewasconsistentwithotherauditory(Luoetal.,2005;Kaiseretal.,2007a;Kawasakietal.,2010)andvisualshort-termmemorystudies(Sausengetal.,2005,2009)andmayhavereflectedincreasedexecutivedemandsand/orthesuppressionofirrelevantprocessing. AuditoryWorkingMemoryforSpatialSoundFeatures MEGstudiesinvestigatingspatialAWMtaskswithfilterednoisesoundsfoundgammaactivityoverregionsoftheputativeauditorydorsalspaceprocessingstream(RauscheckerandTian,2000).Whencomparingauditoryspatialworkingmemorywithanon-memorycontraltask,bothmaintenanceandretrievaloflateralizedsoundswereaccompaniedbyincreasedparietalgammaactivity(55–70Hz)(Lutzenbergeretal.,2002;Leibergetal.,2006a).Inaddition,enhancedfrontalgammaactivitywasfoundduringthefinal100msofthemaintenanceperiod.Asinourstudywithartificialsyllablesdescribedabove(Kaiseretal.,2003),gammacoherencebetweentheputativesensoryrepresentationregionsandfrontalcortexwasincreasedduringthedelayphase. Inspiredbythehypothesizedroleofgammaactivityforsensoryrepresentations(Jensenetal.,2007),wesearchedforspectralsignaturesoftheshort-termmaintenanceofindividualauditorystimulibycontrastingdelay-periodactivationsbetweenindividualmemorystimuli.WeperformedFastFourierTransformsonsingletrialsforabout1.5Hz-widefrequencybinsacrossthegammarange.Theproblemofmultipletestingwasaddressedbyapplyingastatisticalprobabilitymappingbasedonpermutationtests.Whenfrequencyrangesshowingsignificantdifferencesbetweenstimuliwereidentified,thedatawerefilteredinthesefrequenciestoassessspectralactivitytimecourses. Weidentifiedstimulus-specificcomponentsofgammaactivityduringthemaintenanceofdifferentsoundlateralizationangles(Kaiseretal.,2008).Samplestimuliwere200-msnoisesconvolutedwithhead-relatedtransferfunctionstocreatevirtuallateralizationanglesofeither15°or45°withrespecttothemidsagittalplane.Afteran800-msdelayperiod,thesestimulihadtobecomparedwithteststimulithatcouldeitherbepresentedwiththesame,withamoremedialoramorelateralangle.Participantswereassignedtotwogroupswhowerepresentedwithonlyright-orleft-lateralizedstimuli,respectively.Forbothgroups,stimulus-specificgammaactivity(55–70Hz)wasfoundoveroccipito-parietalcortexcontralateraltostimulation.Thistopographycouldbeconsideredconsistentwiththeauditorydorsal“where”stream,butmightalsoindicateaninvolvementofvisualspatialimagery.Gammaactivitywasmostpronouncedatlatenciesof200–500msaftersoundoffset,i.e.,inthemiddleofthe800-msdelayphase. Thistimingofstimulus-specificgammaactivitycouldeitherhavereflecteddelayedresponsestomemorysoundsorpreparatoryactivationsprecedingtheteststimuli.Todecidebetweenthesepossibilities,afollow-upstudyuseddelaydurationsofeither800or1200msinseparaterecordingblocks(Kaiseretal.,2009b).ThemainresultsofthisstudyaredepictedinFigure1.Wereplicatedstimulus-specificgammaactivity(75–100Hz)overcontralateralposteriorcortex.Fortheshorterdelayduration,thisactivitypeakedagaininthemiddleofthemaintenancephase,i.e.,about400msaftertheoffsetofthememorystimulus.Incontrast,stimulus-specificactivitywasclearlydelayedforthelongerdelayduration,peakingataround800msaftermemorystimulusoffset.Inotherwords,gammaactivityreacheditsmaximum400msbeforetheonsetoftheteststimulusforbothdelaydurations.Thetimecourseofstimulus-specificactivitythusseemedtoreflecttheactivationoftask-relevantinformationinpreparationforcomparisonwiththetestsound. FIGURE1 Figure1.Stimulus-specificgammaactivitytosoundsofdifferentlateralizationangleinaspatialAWMtask.Thegraphontheleftshowsgrand-averagetimecoursesofagammaactivitydifferentiationscorereflectingthedegreetowhichoscillatorysignalsdifferentiatebetweenthetwosamplestimuli.Positivevaluesindicatea“consistent”differentiationwithlargeramplitudestothepreferredstimulus,whilenegativevaluesstandforan“inconsistent”differentiationwithlargeramplitudestothenon-preferredsound.Theamplitudeofthisdifferencescorewastestedagainstzerotoobtainastatistical(p-value)timecourse.CurveswereoverlaidforbothdelaydurationsandalignedforthetimepointofS2.Theredcurve(referringtothetimeaxisatthetop)showstheshort,thegreencurve(referringtothetimeaxisatthebottom)thelongdelayperiod.Themapontherightshowsthesensorpositionsshowingstimulus-specificeffectsforthelateral(l)andmedial(m)samplesoundsduringtheshort(redcircles)andthelong(greencircles)delaydurations.AdaptedfromKaiseretal.(2009b),copyright2009withpermissionfromElsevier. Wealsoexaminedtherelationshipbetweenstimulus-specificgammaactivityandtaskperformance.Ifthesesignalsreflecttheactivationoftask-relevantinformation,theyshouldpredicttheaccuracyofthecomparisonwiththeteststimuli.Inbothstudies(Kaiseretal.,2008,2009b),wefoundpositivecorrelationsbetweentaskperformanceandgammaactivityduringthefinalpartofthedelayphase.Exploringthenatureofthisrelationshipfurther,wecomparedgammaactivitytimecoursesbetweenbetterandpoorerperformers.Interestingly,neithergroupdifferedintheabsolutemagnitudeofstimulus-specificactivationsbutintheirtiming.AsshowninFigure2,betterperformersshowedamoresustainedrepresentationofthememorizedinformationuntiltheendofthedelayperiod.Correlationsbetweengammaactivityandperformancehavebeenreportedinawidevarietyofparadigms(Riederetal.,2011).Heretheysupportedthefunctionalrelevanceofactivatingrepresentationsofthesamplesoundsforaccuratecomparisonswiththeteststimuli. FIGURE2 Figure2.Timecoursesofthedifferentiationscore(seelegendtoFigure1)forgoodandbadperformers(inblueandred,respectively)fortheshortdelayduration(A)andthelongduration(B)inthestudybyKaiseretal.(2009b). DirectComparisonsofAuditorySpatialVersusNon-spatialWorkingMemory Studiesthatcomparedworkingmemoryforsoundlocationsandsoundpatternsdirectlysupportedthenotionofdorsalandventralstreamsfortheprocessingofauditoryspatialandnon-spatialinformation,respectively(RauscheckerandTian,2000).Inlinewiththisdual-streammodel,positiveERPdeflectionsat300–500msafterbothmemoryandteststimuliwerefoundatfronto-temporalelectrodesforanon-spatialAWMtaskandatcentro-parietalelectrodesforaspatialtaskwith500-msnoisebursts(Alainetal.,2001).Positivemaintenance-relatedERPshiftsduringthenon-spatialtaskareatoddswiththeSANreportedabove(e.g.,Guimondetal.,2011;Lefebvreetal.,2013).However,severaldifferencesbetweenstudiesmakeithardtocomparethesefindingsdirectly:Alainetal.(2001)usedlongerandspectrallyrichersoundsandamuchshorterdelaydurationthanthestudiesreportinganSAN(500versus2000ms,respectively),raisingthepossibilitythatechoicmemorymayhavebeeninvolvedratherthanshort-termmemory.Moreoverdatawereshownfromafewselected(e.g.,fronto-temporal)electrodesitesonly,whereastheSANwasmostpronouncedatmidlinefronto-centralsites. DifferencesbetweenauditorylocationandpitchworkingmemorywerefoundalsofortheN1componenttopuretonesservingasteststimuli,suggestinganearlyonsetofsegregatedprocessingatabout100ms(Anourovaetal.,2001).TheN1findingswerereplicatedinasubsequentstudyrequiringthememorizationofeitherlocationorfrequencyofshortsoundsequences(Anurovaetal.,2003).Inaddition,samplesoundselicitedmorenegativeERPsat200and400msinthefrequencythanlocationtaskandmorepositiveERPsat450–650msforthelocationthanfrequencytask.Sourceanalysisoflatepositivepotentialstoprobestimulirevealedapredominantinvolvementofmiddletemporalcortexinpitchandofoccipito-temporalregionsinlocationprocessing(Anurovaetal.,2005).Incontrast,alateslowwavewasmodulatedbymemoryloadbutdidnotdifferbetweentasks. Inlinewiththestudiesreportedabovethatusedsimplesounds,ann-backworkingmemorytaskwithenvironmentalsoundspresentedatdifferentvirtuallocationsrevealedsegregationbetweenspatialandnon-spatialprocessingfromabout200msonwardsinauditoryassociationcortexandfronto-parietalcortex(Alainetal.,2009).Insummary,theseERPstudiesshowedanearlytopographicalsegregationduringencodingandretrievalofspatialversusnon-spatialauditoryinformationinaccordancewiththedual-streammodel. Followingupourstudiesonstimulus-specificgammaactivitybycomparingnon-spatialandspatialAWMdirectly,wedemonstratedthetask-dependenceofstimulus-specificactivations(Kaiseretal.,2009a).Thesamefilterednoisesoundsthatcoulddifferinfrequencyandperceivedlateralizationwereusedinbothtasks.Separatecomponentsofgammaactivity(50–90Hz)duringthedelayphasedistinguishedbetweenbothstimulusfeatures.Differentlateralizationangleswererepresentedbyposteriorgammaactivity,anddifferentsoundfrequencies,byfronto-centralcomponents.Thesefeature-specificactivationspeakedat200–300msbeforetheonsetoftheteststimulusandshowedacleartask-dependence:amplitudemodulationswereobservedonlywhentherepresentedfeaturewastask-relevant.Taskperformancewascorrelatedbothwithenhancedactivityforthetask-relevantstimulusattributeandreducedactivityforthetask-irrelevantfeature.Thisstudyshowedthatrepresentationsofauditoryfeaturesarereactivateddependingontaskdemandsandthatperformancebenefitsfromactivatingtask-relevantandattenuatingtask-irrelevantrepresentations. Summary Thepresentfindingsareconsistentwiththenotionofworkingmemoryasanemergentpropertyrelyingonthedynamicinterplaybetweenattentionalandsensorysystems(PasternakandGreenlee,2005).EEGandMEGprovidemeasuresofneuralactivitywithasufficientlyhightemporalresolutiontodistinguishencoding,maintenanceandretrievalinAWM.Whilethereissomeevidencefortask-specificdifferencesinERPresponsesduringencoding(Anurovaetal.,2003;LehnertandZimmer,2006),mostofthestudieshavefocusedontheshort-termretentionofacousticinformation.StimulusmaintenanceisreflectedbysustainedERPdeflectionswhosetopographyvarieswiththetask-relevantstimulusfeature.Themaintenanceofnon-spatialsoundattributeslikepitchisaccompaniedbyafronto-centralnegativity(Guimondetal.,2011).Thisslowwavereflectsvariationsinmemoryloadandistopographicallydistinctfrommoreposterioractivationsduringvisualworkingmemory(Lefebvreetal.,2013).Sourceanalysishasdemonstratedgeneratorsinauditoryandfrontalareas,suggestingthattheshort-termretentionofpitchispartiallyaccomplishedbytheprolongedactivationorthereactivationofthebrainregionsunderlyingtheperceptualprocessingofpitch(Grimaultetal.,2014).Incontrast,soundlocationseemstobeprocessedbymoreposterior,parieto-occipito-temporalregions.ThetopographicaldifferencesbetweensoundfrequencyversuslocationprocessinginAWMareconsistentwiththemodelofsegregatedauditoryventralanddorsalstreams,respectively(Alainetal.,2001;KaiserandLutzenberger,2003).ERPworkcomparingindividualsoundfeatureshasdemonstrateddifferentialprocessingofspatialversusnon-spatialsoundparametersstartingfrom100msafterstimulusonset.Thesedifferencespertainedmainlytoencoding,earlymaintenanceandretrievalbutwerelessevidentduringthelaterpartofalongerretentionperiod(Anurovaetal.,2003).Analysesofspectralsignalshavedemonstratedsoundfeature-specificincreasesofgammaactivitybothduringmaintenanceandretrieval.However,representationsoftask-relevantinformationwerenotsustainedacrossthedelayperiodbutweretemporallyrelatedtotheonsetoftheteststimulus(Kaiseretal.,2009b).Incontrast,coherencebetweensensoryrepresentationregionsandprefrontalcortexshowedasustainedincreaseacrossthemaintenancephasesofspatialandnon-spatialAWMparadigms(Lutzenbergeretal.,2002;Kaiseretal.,2003).Insummary,bothencodingandretrievalarecharacterizedbytheenhancedprocessingoftask-relevantstimuliorstimulusattributes.Maintenancereliesonacombinationofaprolongedactivationorareactivationofsensoryrepresentationsandanactivationoffrontalexecutivenetworkswithincreasedcouplingbetweenbothsetsofregions. Whilethemajorityofstudieshavefocusedonthemaintenanceaspectofworkingmemory,researchonmentaloperationsonstoredsoundsisverylimited.Workingmemoryoperationsincludetheselectionofonestoreditemamongstothers,updatingthefocusofattentionorthecontentofworkingmemorywithnewitems,rehearsalandcopingwithinterference(Bledowskietal.,2010).Shiftsofattentiontoauditoryobjectsheldinworkingmemorywereassociatedwiththeactivationoffronto-parietalattentionsystems,andfurthertemporalandparietalactivationsdistinguishedbetweenspatialandcategory-relatedattentioncues(Backeretal.,2015).Mentaltransformationandupdatingofauditorymemorycontentsinvolvedincreasedfrontalandtemporalthetapowerandenhancedfronto-temporalthetaphasesynchrony(Kawasakietal.,2010,2014). WhilewehavegainedsubstantialknowledgeaboutEEG/MEGsignalssensitivetothenumberofauditoryitemsheldinshort-termmemory,futurestudiesmayfocusontheneuronalsignaturecodingtheprecisionofindividualitems(Kumaretal.,2013;Maetal.,2014).Thisrequirescleverexperimentaldesigns,sophisticatedbehavioralanalysesandfine-grainedanalysesofEEG/MEGsignals.Furthermore,analyzingconnectivitymeasuresinEEG/MEGmayhelptoidentifythemechanismsunderlyingdynamicinteractionsbetweenthefronto-parietal“working”systemthatprioritizes,modifiesandprotectsauditoryitemsfrominterferenceandthestoragesystemthatcodeseachitemrepresentationbyasingularactivitypattern.Theseanalysesmayhelptorevealfurthercommunalitiesanddifferencesbetweenvisualandauditoryworkingmemory. ConflictofInterestStatement Theauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgment IamgratefultoChristophBledowskiforhelpfulcomments. References Alain,C.,Arnott,S.R.,Hevenor,S.,Graham,S.,andGrady,C.L.(2001).“What”and“where”inthehumanauditorysystem.Proc.Natl.Acad.Sci.U.S.A.98,12301–12306.doi:10.1073/pnas.211209098 PubMedAbstract|CrossRefFullText|GoogleScholar Alain,C.,McDonald,K.L.,Kovacevic,N.,andMcIntosh,A.R.(2009).Spatiotemporalanalysisofauditory“what”and“where”workingmemory.Cereb.Cortex19,305–314.doi:10.1093/cercor/bhn082 PubMedAbstract|CrossRefFullText|GoogleScholar Anourova,I.,Nikouline,V.V.,Ilmoniemi,R.J.,Hotta,J.,Aronen,H.J.,andCarlson,S.(2001).Evidencefordissociationofspatialandnonspatialauditoryinformationprocessing.Neuroimage14,1268–1277.doi:10.1006/nimg.2001.0903 PubMedAbstract|CrossRefFullText|GoogleScholar Anurova,I.,Artchakov,D.,Korvenoja,A.,Ilmoniemi,R.J.,Aronen,H.J.,andCarlson,S.(2003).Differencesbetweenauditoryevokedresponsesrecordedduringspatialandnonspatialworkingmemorytasks.Neuroimage20,1181–1192.doi:10.1016/S1053-8119(03)00353-7 PubMedAbstract|CrossRefFullText|GoogleScholar Anurova,I.,Artchakov,D.,Korvenoja,A.,Ilmoniemi,R.J.,Aronen,H.J.,andCarlson,S.(2005).Corticalgeneratorsofslowevokedresponseselicitedbyspatialandnonspatialauditoryworkingmemorytasks.Clin.Neurophysiol.116,1644–1654.doi:10.1016/j.clinph.2005.02.029 PubMedAbstract|CrossRefFullText|GoogleScholar Backer,K.C.,Binns,M.A.,andAlain,C.(2015).Neuraldynamicsunderlyingattentionalorientingtoauditoryrepresentationsinshort-termmemory.J.Neurosci.35,1307–1318.doi:10.1523/JNEUROSCI.1487-14.2015 PubMedAbstract|CrossRefFullText|GoogleScholar Bledowski,C.,Kaiser,J.,andRahm,B.(2010).Basicoperationsinworkingmemory:contributionsfromfunctionalimagingstudies.Behav.BrainRes.214,172–179.doi:10.1016/j.bbr.2010.05.041 PubMedAbstract|CrossRefFullText|GoogleScholar Chao,L.L.,andKnight,R.T.(1998).Contributionofhumanprefrontalcortextodelayperformance.J.Cogn.Neurosci.10,167–177.doi:10.1162/089892998562636 PubMedAbstract|CrossRefFullText|GoogleScholar Drew,T.W.,McCollough,A.W.,andVogel,E.K.(2006).Event-relatedpotentialmeasuresofvisualworkingmemory.Clin.EEGNeurosci.37,286–291.doi:10.1177/155005940603700405 PubMedAbstract|CrossRefFullText|GoogleScholar Gaab,N.,Gaser,C.,Zaehle,T.,Jäncke,L.,andSchlaug,G.(2003).Functionalanatomyofpitchmemory—anfMRIstudywithsparsetemporalsampling.Neuroimage19,1417–1426.doi:10.1016/S1053-8119(03)00224-6 PubMedAbstract|CrossRefFullText|GoogleScholar Grimault,S.,Lefebvre,C.,Vachon,F.,Peretz,I.,Zatorre,R.,Robitaille,N.,etal.(2009).Load-dependentbrainactivityrelatedtoacousticshort-termmemoryforpitch:magnetoencephalographyandfMRI.Ann.N.Y.Acad.Sci.1169,273–277.doi:10.1111/j.1749-6632.2009.04844.x PubMedAbstract|CrossRefFullText|GoogleScholar Grimault,S.,Nolden,S.,Lefebvre,C.,Vachon,F.,Hyde,K.,Peretz,I.,etal.(2014).Brainactivityisrelatedtoindividualdifferencesinthenumberofitemsstoredinauditoryshort-termmemoryforpitch:evidencefrommagnetoencephalography.Neuroimage94,96–106.doi:10.1016/j.neuroimage.2014.03.020 PubMedAbstract|CrossRefFullText|GoogleScholar Guimond,S.,Vachon,F.,Nolden,S.,Lefebvre,C.,Grimault,S.,andJolicoeur,P.(2011).Electrophysiologicalcorrelatesofthemaintenanceoftherepresentationofpitchobjectsinacousticshort-termmemory.Psychophysiology48,1500–1509.doi:10.1111/j.1469-8986.2011.01234.x PubMedAbstract|CrossRefFullText|GoogleScholar Jensen,O.,Kaiser,J.,andLachaux,J.P.(2007).Humangamma-frequencyoscillationsassociatedwithattentionandmemory.TrendsNeurosci.30,317–324.doi:10.1016/j.tins.2007.05.001 PubMedAbstract|CrossRefFullText|GoogleScholar Jensen,O.,andMazaheri,A.(2010).Shapingfunctionalarchitecturebyoscillatoryalphaactivity:gatingbyinhibition.Front.Hum.Neurosci.4:186.doi:10.3389/fnhum.2010.00186 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Heidegger,T.,Wibral,M.,Altmann,C.F.,andLutzenberger,W.(2007a).Alphasynchronizationduringauditoryspatialshort-termmemory.Neuroreport18,1129–1132.doi:10.1097/WNR.0b013e32821c553b PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Leiberg,S.,Rust,H.,andLutzenberger,W.(2007b).Prefrontalgamma-bandactivitydistinguishesbetweensounddurations.BrainRes.1139,153–162.doi:10.1016/j.brainres.2006.12.085 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Heidegger,T.,Wibral,M.,Altmann,C.F.,andLutzenberger,W.(2008).Distinctgamma-bandcomponentsreflecttheshort-termmemorymaintenanceofdifferentsoundlateralizationangles.Cereb.Cortex18,2286–2295.doi:10.1093/cercor/bhm251 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Leiberg,S.,andLutzenberger,W.(2005).Let’stalktogether:memorytracesrevealedbycooperativeactivationinthecerebralcortex.Int.Rev.Neurobiol.68,51–78.doi:10.1016/S0074-7742(05)68003-8 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,andLutzenberger,W.(2003).Inducedgamma-bandactivityandhumanbrainfunction.Neuroscientist9,475–484.doi:10.1177/1073858403259137 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Lutzenberger,W.,Decker,C.,Wibral,M.,andRahm,B.(2009a).Task-andperformance-relatedmodulationofdomain-specificauditoryshort-termmemoryrepresentationsinthegamma-band.Neuroimage46,1127–1136.doi:10.1016/j.neuroimage.2009.03.011 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Rahm,B.,andLutzenberger,W.(2009b).Temporaldynamicsofstimulus-specificgamma-bandactivitycomponentsduringauditoryshort-termmemory.Neuroimage44,257–264.doi:10.1016/j.neuroimage.2008.08.018 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Ripper,B.,Birbaumer,N.,andLutzenberger,W.(2003).Dynamicsofgamma-bandactivityinhumanmagnetoencephalogramduringauditorypatternworkingmemory.Neuroimage20,816–827.doi:10.1016/S1053-8119(03)00350-1 PubMedAbstract|CrossRefFullText|GoogleScholar Kawasaki,M.,Kitajo,K.,andYamaguchi,Y.(2010).Dynamiclinksbetweenthetaexecutivefunctionsandalphastoragebuffersinauditoryandvisualworkingmemory.Eur.J.Neurosci.31,1683–1689.doi:10.1111/j.1460-9568.2010.07217.x PubMedAbstract|CrossRefFullText|GoogleScholar Kawasaki,M.,Kitajo,K.,andYamaguchi,Y.(2014).Fronto-parietalandfronto-temporalthetaphasesynchronizationforvisualandauditory-verbalworkingmemory.Front.Psychol.5:200.doi:10.3389/fpsyg.2014.00200 PubMedAbstract|CrossRefFullText|GoogleScholar Klimesch,W.,Sauseng,P.,andHanslmayr,S.(2007).EEGalphaoscillations:theinhibition-timinghypothesis.BrainRes.Rev.53,63–88.doi:10.1016/j.brainresrev.2006.06.003 PubMedAbstract|CrossRefFullText|GoogleScholar Koelsch,S.,Schulze,K.,Sammler,D.,Fritz,T.,Muller,K.,andGruber,O.(2009).Functionalarchitectureofverbalandtonalworkingmemory:anFMRIstudy.Hum.BrainMapp.30,859–873.doi:10.1002/hbm.20550 PubMedAbstract|CrossRefFullText|GoogleScholar Kumar,S.,Joseph,S.,Pearson,B.,Teki,S.,Fox,Z.V.,Griffiths,T.D.,etal.(2013).Resourceallocationandprioritizationinauditoryworkingmemory.Cogn.Neurosci.4,12–20.doi:10.1080/17588928.2012.716416 PubMedAbstract|CrossRefFullText|GoogleScholar Lang,W.,Starr,A.,Lang,V.,Lindinger,G.,andDeecke,L.(1992).CorticalDCpotentialshiftsaccompanyingauditoryandvisualshort-termmemory.Electroencephalogr.Clin.Neurophysiol.82,285–295.doi:10.1016/0013-4694(92)90108-T PubMedAbstract|CrossRefFullText|GoogleScholar Lefebvre,C.,Vachon,F.,Grimault,S.,Thibault,J.,Guimond,S.,Peretz,I.,etal.(2013).Distinctelectrophysiologicalindicesofmaintenanceinauditoryandvisualshort-termmemory.Neuropsychologia51,2939–2952.doi:10.1016/j.neuropsychologia.2013.08.003 PubMedAbstract|CrossRefFullText|GoogleScholar Lehnert,G.,andZimmer,H.D.(2006).Auditoryandvisualspatialworkingmemory.Mem.Cogn.34,1080–1090.doi:10.3758/BF03193254 CrossRefFullText|GoogleScholar Leiberg,S.,Kaiser,J.,andLutzenberger,W.(2006a).Gamma-bandactivitydissociatesbetweenmatchingandnonmatchingstimuluspairsinanauditorydelayedmatching-to-sampletask.Neuroimage30,1357–1364.doi:10.1016/j.neuroimage.2005.11.010 PubMedAbstract|CrossRefFullText|GoogleScholar Leiberg,S.,Lutzenberger,W.,andKaiser,J.(2006b).Effectsofmemoryloadoncorticaloscillatoryactivityduringauditorypatternworkingmemory.BrainRes.1120,131–140.doi:10.1016/j.brainres.2006.08.066 PubMedAbstract|CrossRefFullText|GoogleScholar Luck,S.J.,andVogel,E.K.(2013).Visualworkingmemorycapacity:frompsychophysicsandneurobiologytoindividualdifferences.TrendsCogn.Sci.17,391–400.doi:10.1016/j.tics.2013.06.006 PubMedAbstract|CrossRefFullText|GoogleScholar Luo,H.,Husain,F.T.,Horwitz,B.,andPoeppel,D.(2005).Discriminationandcategorizationofspeechandnon-speechsoundsinanMEGdelayed-match-to-samplestudy.Neuroimage28,59–71.doi:10.1016/j.neuroimage.2005.05.040 PubMedAbstract|CrossRefFullText|GoogleScholar Lutzenberger,W.,Ripper,B.,Busse,L.,Birbaumer,N.,andKaiser,J.(2002).Dynamicsofgamma-bandactivityduringanaudiospatialworkingmemorytaskinhumans.J.Neurosci.22,5630–5638. PubMedAbstract|GoogleScholar Ma,W.J.,Husain,M.,andBays,P.M.(2014).Changingconceptsofworkingmemory.Nat.Neurosci.17,347–356.doi:10.1038/nn.3655 PubMedAbstract|CrossRefFullText|GoogleScholar Nolden,S.,Bermudez,P.,Alunni-Menichini,K.,Lefebvre,C.,Grimault,S.,andJolicoeur,P.(2013).Electrophysiologicalcorrelatesoftheretentionoftonesdifferingintimbreinauditoryshort-termmemory.Neuropsychologia51,2740–2746.doi:10.1016/j.neuropsychologia.2013.09.010 PubMedAbstract|CrossRefFullText|GoogleScholar Pasternak,T.,andGreenlee,M.W.(2005).Workingmemoryinprimatesensorysystems.Nat.Rev.Neurosci.6,97–107.doi:10.1038/nrn1603 PubMedAbstract|CrossRefFullText|GoogleScholar Rauschecker,J.P.,andTian,B.(2000).Mechanismsandstreamsforprocessingof“what”and“where”inauditorycortex.Proc.Natl.Acad.Sci.U.S.A.97,11800–11806.doi:10.1073/pnas.97.22.11800 PubMedAbstract|CrossRefFullText|GoogleScholar Rieder,M.K.,Rahm,B.,Williams,J.D.,andKaiser,J.(2011).Humangamma-bandactivityandbehavior.Int.J.Psychophysiol.79,39–48.doi:10.1016/j.ijpsycho.2010.08.010 PubMedAbstract|CrossRefFullText|GoogleScholar Ruchkin,D.S.,Berndt,R.S.,Johnson,R.,Jr.,Ritter,W.,Grafman,J.,andCanoune,H.L.(1997).Modality-specificprocessingstreamsinverbalworkingmemory:evidencefromspatio-temporalpatternsofbrainactivity.Cogn.BrainRes.6,95–113.doi:10.1016/S0926-6410(97)00021-9 PubMedAbstract|CrossRefFullText|GoogleScholar Sauseng,P.,Klimesch,W.,Heise,K.F.,Gruber,W.R.,Holz,E.,Karim,A.A.,etal.(2009).Brainoscillatorysubstratesofvisualshort-termmemorycapacity.Curr.Biol.19,1846–1852.doi:10.1016/j.cub.2009.08.062 PubMedAbstract|CrossRefFullText|GoogleScholar Sauseng,P.,Klimesch,W.,Schabus,M.,andDoppelmayr,M.(2005).Fronto-parietalEEGcoherenceinthetaandupperalphareflectcentralexecutivefunctionsofworkingmemory.Int.J.Psychophysiol.57,97–103.doi:10.1016/j.ijpsycho.2005.03.018 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:review,event-relatedpotentials,spectralactivity,gamma,coupling,spatialprocessing,non-spatialprocessing Citation:KaiserJ(2015)Dynamicsofauditoryworkingmemory.Front.Psychol.6:613.doi:10.3389/fpsyg.2015.00613 Received:26March2015;Accepted:25April2015;Published:11May2015. Editedby:TimothyM.Ellmore,TheCityCollegeofNewYork,USA Reviewedby:JonathanR.Folstein,FloridaStateUniversity,USAChristineLefebvre,CentredeRecherchedeL’institutUniversitairedeGériatriedeMontréal,Canada Copyright©2015Kaiser.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:JochenKaiser,InstituteofMedicalPsychology,GoetheUniversity,Heinrich-Hoffmann-Strasse10,60528FrankfurtamMain,Germany,[email protected] ThisarticleispartoftheResearchTopic TheTemporalDynamicsofCognitiveProcessing Viewall 15Articles Peoplealsolookedat Download



請為這篇文章評分?