Dynamics of auditory working memory - Frontiers
文章推薦指數: 80 %
Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) totalviews ViewArticleImpact SHAREON Abstract Introduction AuditoryWorkingMemoryforNon-spatialSoundFeatures AuditoryWorkingMemoryforSpatialSoundFeatures DirectComparisonsofAuditorySpatialVersusNon-spatialWorkingMemory Summary ConflictofInterestStatement Acknowledgment References Peoplealsolookedat MINIREVIEWarticle Front.Psychol.,11May2015Sec.Cognition https://doi.org/10.3389/fpsyg.2015.00613 Dynamicsofauditoryworkingmemory JochenKaiser* InstituteofMedicalPsychology,GoetheUniversity,FrankfurtamMain,Germany Workingmemorydenotestheabilitytoretainstimuliinmindthatarenolongerphysicallypresentandtoperformmentaloperationsonthem.Electro-andmagnetoencephalographyallowinvestigatingtheshort-termmaintenanceofacousticstimuliatahightemporalresolution.Studiesinvestigatingworkingmemoryfornon-spatialandspatialauditoryinformationhavesuggesteddifferentialrolesofregionsalongtheputativeauditoryventralanddorsalstreams,respectively,intheprocessingofthedifferentsoundproperties.Analysesofevent-relatedpotentialshaveshownsustained,memoryload-dependentdeflectionsovertheretentionperiods.Thetopographyofthesewavessuggestedaninvolvementofmodality-specificsensorystorageregions.Spectralanalysishasyieldedinformationaboutthetemporaldynamicsofauditoryworkingmemoryprocessingofindividualstimuli,showingactivationpeaksduringthedelayphasewhosetimingwasrelatedtotaskperformance.Coherenceatdifferentfrequencieswasenhancedbetweenfrontalandsensorycortex.Insummary,auditoryworkingmemoryseemstorelyonthedynamicinterplaybetweenfrontalexecutivesystemsandsensoryrepresentationregions. Introduction Workingmemoryallowsthetemporarystorageofrelevantinformationanditstask-dependentmanipulation.Itisinvolvedinmanyhighercognitivefunctionsandthusconstitutesafundamentalfunctionofourbrain.Whilemostpreviousresearchhasfocusedonvisualworkingmemory(Drewetal.,2006;LuckandVogel,2013),lessisknownabouttheneuralcorrelatesofauditoryworkingmemory(AWM).Thisbriefreviewsummarizessomeofthemainfindingsonauditoryshort-termorworkingmemory(bothtermswillbeusedinterchangeably)studiesinhumans.Thefocuswillbeonthedynamicsofworkingmemory-relatedprocesses;thereforethereviewislimitedtostudiesassessingnon-invasivemeasuresofneuralactivationwithahightemporalresolution,i.e.,electro-ormagnetoencephalography(EEGandMEG).Mostofthisworkhasconsideredevent-relatedpotentials(ERPs),butsomeinvestigationshavelookedatspectralactivityandatoscillatorycouplingbetweencorticalsources. Evidencefrombothtypesofstudiesspeaksagainsttheexistenceofasingleworkingmemorystoreforauditoryinformation.Instead,activationpatternsvarywiththetypeofmemorizedauditoryinformation,suggestingthatworkingmemoryinvolvesthesamesystemsthatunderlieperceptualprocessing.Soundfeature-specificactivationdifferenceswereparticularlyobviousforcomparisonsbetweensoundidentityandlocation,i.e.,stimulusparametersthatareprocessedintopographicallydistinctcorticalregions(RauscheckerandTian,2000). AuditoryWorkingMemoryforNon-spatialSoundFeatures Theshort-termretentionofpitchelicitsaload-dependentfrontalnegativewave.Usingnon-verbal,pure-tonestimulitoavoidphonologicalorsemanticprocessing,memoryloadeffectsweretestedbypresentingeitherone200-mspuretonetobothearsortwodifferentstimulitoeachear(Guimondetal.,2011).Asustainedanteriornegativewave(SAN)duringthe2-sdelayintervalshowedhigheramplitudesfortwothanoneto-be-rememberedstimulus.ControlexperimentsconfirmedtheroleoftheSANforshort-termmemoryprocessingbyexcludingameresensory-drivenresponseorinternalrehearsal.Comparisonwithavisualshort-termmemoryparadigmshowedthattheSANduringretentionwasspecifictotheauditorytask(Lefebvreetal.,2013).Amemoryload-sensitiveSANwasalsoobservedduringtheretentionofsoundsdifferingintimbreinsteadofpitch(Noldenetal.,2013).ThecorticalgeneratorsofthiswavewereassessedwithMEG.DuringAWMfortonesequences,sourcelocalizationrevealedmemoryload-dependentactivationsinbilateralsuperiortemporal,superiorparietalandfrontalcortex(Grimaultetal.,2009).Astudyinvolvingthecomparisonoftonesequencesofdifferentlengthsidentifiedseveralbrainareaswhoseactivationcorrelatedwiththenumberofsuccessfullymemorizeditems(Grimaultetal.,2014).Theseincludedbilateralsuperior/middletemporalcortexandseveralregionsinbilateralfrontalcortex.ThissourcetopographypartlyoverlappedwithfMRIresults(Gaabetal.,2003;Koelschetal.,2009)andsuggestedthattheretentionofsimpleacousticfeaturesinvolvesthesustainedactivationofsensoryrepresentationsinadditiontofrontalexecutiveregions. ThefrontalnegativityisarobustphenomenonthatwasalsoobservedinERPstudiesemployingverbalsoundsthatmayelicitsemanticprocessingbeyondlow-levelacousticstorage.Asustainedfrontalnegativeshiftwaslargerforaurallythanvisuallypresenteddigits(Langetal.,1992).Similarly,amemoryload-dependentfrontalnegativitywaslargerforspokenthanwrittensyllables(Ruchkinetal.,1997),whereasvisualstimuligaverisetoaposteriorpositivity.TheroleoftheprefrontalcortexforAWMwasfurthersupportedbyastudyinpatientswithfrontalcortexlesions.TheyshowedreducedactivationsbothinauditoryareasandprefrontalcortexandfailedtoattenuatetheirresponsestodistractingtonesduringthedelayperiodofanAWMtask(ChaoandKnight,1998). WhileERPinvestigationsfocusontime-lockedbroad-bandactivity,spectralanalysisistypicallyperformedonsingle-trialbasis,maintainingactivitythatisnotphase-lockedtoadefinedevent.AnalysesofspectralactivityindifferentfrequencybandsmayinformaboutaspectsofprocessingnotcapturedbyERPs.Forexample,activityinthealphaband(8–12Hz)hasbeenrelatedtoactiveinhibitionofinterferingprocessing(Klimeschetal.,2007;JensenandMazaheri,2010),andgammaactivity(>30Hz)hasbeenlinkedtoobjectrepresentations,attentionandmemory(KaiserandLutzenberger,2003;Jensenetal.,2007).Moreover,coherenceorphasesynchronizationcalculatedonthebasisofspectralsignalsprovideinformationaboutcortico-corticalinteractions. IncreasesofspectralpowerandsynchronizationoverfrontalcortexcharacterizedAWMfordifferenttypesofnon-spatialsounds.DuringthemaintenancephaseofanAWMtaskrequiringthememorizationofsounddurations,wefoundincreasedgammaactivity(70–80Hz)overprefrontalcortex(Kaiseretal.,2007b).Asimilarresultwasobtainedforartificialsyllablesvaryinginvoiceonsettimeandformantstructure.Heregammaactivity(65–70Hz)wasincreasedoverleftanteriortemporal/inferiorfrontalcortex(Kaiseretal.,2003).Gammacoherencebetweentheputativesensoryrepresentationregionsandprefrontalcortexshowedasustainedincreaseacrossthedelayphase(Kaiseretal.,2005),possiblyreflectingenhancedcross-talkbetweenstorageandexecutivenetworksunderlyingstimulusmaintenance.RightfrontalalphaandrighttemporalbetaactivitycorrelatedpositivelywithmemoryloadduringthedelayperiodofaSternberg-typetaskusingnaturalsyllables(Leibergetal.,2006b).Thealphaincreasewasconsistentwithotherauditory(Luoetal.,2005;Kaiseretal.,2007a;Kawasakietal.,2010)andvisualshort-termmemorystudies(Sausengetal.,2005,2009)andmayhavereflectedincreasedexecutivedemandsand/orthesuppressionofirrelevantprocessing. AuditoryWorkingMemoryforSpatialSoundFeatures MEGstudiesinvestigatingspatialAWMtaskswithfilterednoisesoundsfoundgammaactivityoverregionsoftheputativeauditorydorsalspaceprocessingstream(RauscheckerandTian,2000).Whencomparingauditoryspatialworkingmemorywithanon-memorycontraltask,bothmaintenanceandretrievaloflateralizedsoundswereaccompaniedbyincreasedparietalgammaactivity(55–70Hz)(Lutzenbergeretal.,2002;Leibergetal.,2006a).Inaddition,enhancedfrontalgammaactivitywasfoundduringthefinal100msofthemaintenanceperiod.Asinourstudywithartificialsyllablesdescribedabove(Kaiseretal.,2003),gammacoherencebetweentheputativesensoryrepresentationregionsandfrontalcortexwasincreasedduringthedelayphase. Inspiredbythehypothesizedroleofgammaactivityforsensoryrepresentations(Jensenetal.,2007),wesearchedforspectralsignaturesoftheshort-termmaintenanceofindividualauditorystimulibycontrastingdelay-periodactivationsbetweenindividualmemorystimuli.WeperformedFastFourierTransformsonsingletrialsforabout1.5Hz-widefrequencybinsacrossthegammarange.Theproblemofmultipletestingwasaddressedbyapplyingastatisticalprobabilitymappingbasedonpermutationtests.Whenfrequencyrangesshowingsignificantdifferencesbetweenstimuliwereidentified,thedatawerefilteredinthesefrequenciestoassessspectralactivitytimecourses. Weidentifiedstimulus-specificcomponentsofgammaactivityduringthemaintenanceofdifferentsoundlateralizationangles(Kaiseretal.,2008).Samplestimuliwere200-msnoisesconvolutedwithhead-relatedtransferfunctionstocreatevirtuallateralizationanglesofeither15°or45°withrespecttothemidsagittalplane.Afteran800-msdelayperiod,thesestimulihadtobecomparedwithteststimulithatcouldeitherbepresentedwiththesame,withamoremedialoramorelateralangle.Participantswereassignedtotwogroupswhowerepresentedwithonlyright-orleft-lateralizedstimuli,respectively.Forbothgroups,stimulus-specificgammaactivity(55–70Hz)wasfoundoveroccipito-parietalcortexcontralateraltostimulation.Thistopographycouldbeconsideredconsistentwiththeauditorydorsal“where”stream,butmightalsoindicateaninvolvementofvisualspatialimagery.Gammaactivitywasmostpronouncedatlatenciesof200–500msaftersoundoffset,i.e.,inthemiddleofthe800-msdelayphase. Thistimingofstimulus-specificgammaactivitycouldeitherhavereflecteddelayedresponsestomemorysoundsorpreparatoryactivationsprecedingtheteststimuli.Todecidebetweenthesepossibilities,afollow-upstudyuseddelaydurationsofeither800or1200msinseparaterecordingblocks(Kaiseretal.,2009b).ThemainresultsofthisstudyaredepictedinFigure1.Wereplicatedstimulus-specificgammaactivity(75–100Hz)overcontralateralposteriorcortex.Fortheshorterdelayduration,thisactivitypeakedagaininthemiddleofthemaintenancephase,i.e.,about400msaftertheoffsetofthememorystimulus.Incontrast,stimulus-specificactivitywasclearlydelayedforthelongerdelayduration,peakingataround800msaftermemorystimulusoffset.Inotherwords,gammaactivityreacheditsmaximum400msbeforetheonsetoftheteststimulusforbothdelaydurations.Thetimecourseofstimulus-specificactivitythusseemedtoreflecttheactivationoftask-relevantinformationinpreparationforcomparisonwiththetestsound. FIGURE1 Figure1.Stimulus-specificgammaactivitytosoundsofdifferentlateralizationangleinaspatialAWMtask.Thegraphontheleftshowsgrand-averagetimecoursesofagammaactivitydifferentiationscorereflectingthedegreetowhichoscillatorysignalsdifferentiatebetweenthetwosamplestimuli.Positivevaluesindicatea“consistent”differentiationwithlargeramplitudestothepreferredstimulus,whilenegativevaluesstandforan“inconsistent”differentiationwithlargeramplitudestothenon-preferredsound.Theamplitudeofthisdifferencescorewastestedagainstzerotoobtainastatistical(p-value)timecourse.CurveswereoverlaidforbothdelaydurationsandalignedforthetimepointofS2.Theredcurve(referringtothetimeaxisatthetop)showstheshort,thegreencurve(referringtothetimeaxisatthebottom)thelongdelayperiod.Themapontherightshowsthesensorpositionsshowingstimulus-specificeffectsforthelateral(l)andmedial(m)samplesoundsduringtheshort(redcircles)andthelong(greencircles)delaydurations.AdaptedfromKaiseretal.(2009b),copyright2009withpermissionfromElsevier. Wealsoexaminedtherelationshipbetweenstimulus-specificgammaactivityandtaskperformance.Ifthesesignalsreflecttheactivationoftask-relevantinformation,theyshouldpredicttheaccuracyofthecomparisonwiththeteststimuli.Inbothstudies(Kaiseretal.,2008,2009b),wefoundpositivecorrelationsbetweentaskperformanceandgammaactivityduringthefinalpartofthedelayphase.Exploringthenatureofthisrelationshipfurther,wecomparedgammaactivitytimecoursesbetweenbetterandpoorerperformers.Interestingly,neithergroupdifferedintheabsolutemagnitudeofstimulus-specificactivationsbutintheirtiming.AsshowninFigure2,betterperformersshowedamoresustainedrepresentationofthememorizedinformationuntiltheendofthedelayperiod.Correlationsbetweengammaactivityandperformancehavebeenreportedinawidevarietyofparadigms(Riederetal.,2011).Heretheysupportedthefunctionalrelevanceofactivatingrepresentationsofthesamplesoundsforaccuratecomparisonswiththeteststimuli. FIGURE2 Figure2.Timecoursesofthedifferentiationscore(seelegendtoFigure1)forgoodandbadperformers(inblueandred,respectively)fortheshortdelayduration(A)andthelongduration(B)inthestudybyKaiseretal.(2009b). DirectComparisonsofAuditorySpatialVersusNon-spatialWorkingMemory Studiesthatcomparedworkingmemoryforsoundlocationsandsoundpatternsdirectlysupportedthenotionofdorsalandventralstreamsfortheprocessingofauditoryspatialandnon-spatialinformation,respectively(RauscheckerandTian,2000).Inlinewiththisdual-streammodel,positiveERPdeflectionsat300–500msafterbothmemoryandteststimuliwerefoundatfronto-temporalelectrodesforanon-spatialAWMtaskandatcentro-parietalelectrodesforaspatialtaskwith500-msnoisebursts(Alainetal.,2001).Positivemaintenance-relatedERPshiftsduringthenon-spatialtaskareatoddswiththeSANreportedabove(e.g.,Guimondetal.,2011;Lefebvreetal.,2013).However,severaldifferencesbetweenstudiesmakeithardtocomparethesefindingsdirectly:Alainetal.(2001)usedlongerandspectrallyrichersoundsandamuchshorterdelaydurationthanthestudiesreportinganSAN(500versus2000ms,respectively),raisingthepossibilitythatechoicmemorymayhavebeeninvolvedratherthanshort-termmemory.Moreoverdatawereshownfromafewselected(e.g.,fronto-temporal)electrodesitesonly,whereastheSANwasmostpronouncedatmidlinefronto-centralsites. DifferencesbetweenauditorylocationandpitchworkingmemorywerefoundalsofortheN1componenttopuretonesservingasteststimuli,suggestinganearlyonsetofsegregatedprocessingatabout100ms(Anourovaetal.,2001).TheN1findingswerereplicatedinasubsequentstudyrequiringthememorizationofeitherlocationorfrequencyofshortsoundsequences(Anurovaetal.,2003).Inaddition,samplesoundselicitedmorenegativeERPsat200and400msinthefrequencythanlocationtaskandmorepositiveERPsat450–650msforthelocationthanfrequencytask.Sourceanalysisoflatepositivepotentialstoprobestimulirevealedapredominantinvolvementofmiddletemporalcortexinpitchandofoccipito-temporalregionsinlocationprocessing(Anurovaetal.,2005).Incontrast,alateslowwavewasmodulatedbymemoryloadbutdidnotdifferbetweentasks. Inlinewiththestudiesreportedabovethatusedsimplesounds,ann-backworkingmemorytaskwithenvironmentalsoundspresentedatdifferentvirtuallocationsrevealedsegregationbetweenspatialandnon-spatialprocessingfromabout200msonwardsinauditoryassociationcortexandfronto-parietalcortex(Alainetal.,2009).Insummary,theseERPstudiesshowedanearlytopographicalsegregationduringencodingandretrievalofspatialversusnon-spatialauditoryinformationinaccordancewiththedual-streammodel. Followingupourstudiesonstimulus-specificgammaactivitybycomparingnon-spatialandspatialAWMdirectly,wedemonstratedthetask-dependenceofstimulus-specificactivations(Kaiseretal.,2009a).Thesamefilterednoisesoundsthatcoulddifferinfrequencyandperceivedlateralizationwereusedinbothtasks.Separatecomponentsofgammaactivity(50–90Hz)duringthedelayphasedistinguishedbetweenbothstimulusfeatures.Differentlateralizationangleswererepresentedbyposteriorgammaactivity,anddifferentsoundfrequencies,byfronto-centralcomponents.Thesefeature-specificactivationspeakedat200–300msbeforetheonsetoftheteststimulusandshowedacleartask-dependence:amplitudemodulationswereobservedonlywhentherepresentedfeaturewastask-relevant.Taskperformancewascorrelatedbothwithenhancedactivityforthetask-relevantstimulusattributeandreducedactivityforthetask-irrelevantfeature.Thisstudyshowedthatrepresentationsofauditoryfeaturesarereactivateddependingontaskdemandsandthatperformancebenefitsfromactivatingtask-relevantandattenuatingtask-irrelevantrepresentations. Summary Thepresentfindingsareconsistentwiththenotionofworkingmemoryasanemergentpropertyrelyingonthedynamicinterplaybetweenattentionalandsensorysystems(PasternakandGreenlee,2005).EEGandMEGprovidemeasuresofneuralactivitywithasufficientlyhightemporalresolutiontodistinguishencoding,maintenanceandretrievalinAWM.Whilethereissomeevidencefortask-specificdifferencesinERPresponsesduringencoding(Anurovaetal.,2003;LehnertandZimmer,2006),mostofthestudieshavefocusedontheshort-termretentionofacousticinformation.StimulusmaintenanceisreflectedbysustainedERPdeflectionswhosetopographyvarieswiththetask-relevantstimulusfeature.Themaintenanceofnon-spatialsoundattributeslikepitchisaccompaniedbyafronto-centralnegativity(Guimondetal.,2011).Thisslowwavereflectsvariationsinmemoryloadandistopographicallydistinctfrommoreposterioractivationsduringvisualworkingmemory(Lefebvreetal.,2013).Sourceanalysishasdemonstratedgeneratorsinauditoryandfrontalareas,suggestingthattheshort-termretentionofpitchispartiallyaccomplishedbytheprolongedactivationorthereactivationofthebrainregionsunderlyingtheperceptualprocessingofpitch(Grimaultetal.,2014).Incontrast,soundlocationseemstobeprocessedbymoreposterior,parieto-occipito-temporalregions.ThetopographicaldifferencesbetweensoundfrequencyversuslocationprocessinginAWMareconsistentwiththemodelofsegregatedauditoryventralanddorsalstreams,respectively(Alainetal.,2001;KaiserandLutzenberger,2003).ERPworkcomparingindividualsoundfeatureshasdemonstrateddifferentialprocessingofspatialversusnon-spatialsoundparametersstartingfrom100msafterstimulusonset.Thesedifferencespertainedmainlytoencoding,earlymaintenanceandretrievalbutwerelessevidentduringthelaterpartofalongerretentionperiod(Anurovaetal.,2003).Analysesofspectralsignalshavedemonstratedsoundfeature-specificincreasesofgammaactivitybothduringmaintenanceandretrieval.However,representationsoftask-relevantinformationwerenotsustainedacrossthedelayperiodbutweretemporallyrelatedtotheonsetoftheteststimulus(Kaiseretal.,2009b).Incontrast,coherencebetweensensoryrepresentationregionsandprefrontalcortexshowedasustainedincreaseacrossthemaintenancephasesofspatialandnon-spatialAWMparadigms(Lutzenbergeretal.,2002;Kaiseretal.,2003).Insummary,bothencodingandretrievalarecharacterizedbytheenhancedprocessingoftask-relevantstimuliorstimulusattributes.Maintenancereliesonacombinationofaprolongedactivationorareactivationofsensoryrepresentationsandanactivationoffrontalexecutivenetworkswithincreasedcouplingbetweenbothsetsofregions. Whilethemajorityofstudieshavefocusedonthemaintenanceaspectofworkingmemory,researchonmentaloperationsonstoredsoundsisverylimited.Workingmemoryoperationsincludetheselectionofonestoreditemamongstothers,updatingthefocusofattentionorthecontentofworkingmemorywithnewitems,rehearsalandcopingwithinterference(Bledowskietal.,2010).Shiftsofattentiontoauditoryobjectsheldinworkingmemorywereassociatedwiththeactivationoffronto-parietalattentionsystems,andfurthertemporalandparietalactivationsdistinguishedbetweenspatialandcategory-relatedattentioncues(Backeretal.,2015).Mentaltransformationandupdatingofauditorymemorycontentsinvolvedincreasedfrontalandtemporalthetapowerandenhancedfronto-temporalthetaphasesynchrony(Kawasakietal.,2010,2014). WhilewehavegainedsubstantialknowledgeaboutEEG/MEGsignalssensitivetothenumberofauditoryitemsheldinshort-termmemory,futurestudiesmayfocusontheneuronalsignaturecodingtheprecisionofindividualitems(Kumaretal.,2013;Maetal.,2014).Thisrequirescleverexperimentaldesigns,sophisticatedbehavioralanalysesandfine-grainedanalysesofEEG/MEGsignals.Furthermore,analyzingconnectivitymeasuresinEEG/MEGmayhelptoidentifythemechanismsunderlyingdynamicinteractionsbetweenthefronto-parietal“working”systemthatprioritizes,modifiesandprotectsauditoryitemsfrominterferenceandthestoragesystemthatcodeseachitemrepresentationbyasingularactivitypattern.Theseanalysesmayhelptorevealfurthercommunalitiesanddifferencesbetweenvisualandauditoryworkingmemory. ConflictofInterestStatement Theauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgment IamgratefultoChristophBledowskiforhelpfulcomments. References Alain,C.,Arnott,S.R.,Hevenor,S.,Graham,S.,andGrady,C.L.(2001).“What”and“where”inthehumanauditorysystem.Proc.Natl.Acad.Sci.U.S.A.98,12301–12306.doi:10.1073/pnas.211209098 PubMedAbstract|CrossRefFullText|GoogleScholar Alain,C.,McDonald,K.L.,Kovacevic,N.,andMcIntosh,A.R.(2009).Spatiotemporalanalysisofauditory“what”and“where”workingmemory.Cereb.Cortex19,305–314.doi:10.1093/cercor/bhn082 PubMedAbstract|CrossRefFullText|GoogleScholar Anourova,I.,Nikouline,V.V.,Ilmoniemi,R.J.,Hotta,J.,Aronen,H.J.,andCarlson,S.(2001).Evidencefordissociationofspatialandnonspatialauditoryinformationprocessing.Neuroimage14,1268–1277.doi:10.1006/nimg.2001.0903 PubMedAbstract|CrossRefFullText|GoogleScholar Anurova,I.,Artchakov,D.,Korvenoja,A.,Ilmoniemi,R.J.,Aronen,H.J.,andCarlson,S.(2003).Differencesbetweenauditoryevokedresponsesrecordedduringspatialandnonspatialworkingmemorytasks.Neuroimage20,1181–1192.doi:10.1016/S1053-8119(03)00353-7 PubMedAbstract|CrossRefFullText|GoogleScholar Anurova,I.,Artchakov,D.,Korvenoja,A.,Ilmoniemi,R.J.,Aronen,H.J.,andCarlson,S.(2005).Corticalgeneratorsofslowevokedresponseselicitedbyspatialandnonspatialauditoryworkingmemorytasks.Clin.Neurophysiol.116,1644–1654.doi:10.1016/j.clinph.2005.02.029 PubMedAbstract|CrossRefFullText|GoogleScholar Backer,K.C.,Binns,M.A.,andAlain,C.(2015).Neuraldynamicsunderlyingattentionalorientingtoauditoryrepresentationsinshort-termmemory.J.Neurosci.35,1307–1318.doi:10.1523/JNEUROSCI.1487-14.2015 PubMedAbstract|CrossRefFullText|GoogleScholar Bledowski,C.,Kaiser,J.,andRahm,B.(2010).Basicoperationsinworkingmemory:contributionsfromfunctionalimagingstudies.Behav.BrainRes.214,172–179.doi:10.1016/j.bbr.2010.05.041 PubMedAbstract|CrossRefFullText|GoogleScholar Chao,L.L.,andKnight,R.T.(1998).Contributionofhumanprefrontalcortextodelayperformance.J.Cogn.Neurosci.10,167–177.doi:10.1162/089892998562636 PubMedAbstract|CrossRefFullText|GoogleScholar Drew,T.W.,McCollough,A.W.,andVogel,E.K.(2006).Event-relatedpotentialmeasuresofvisualworkingmemory.Clin.EEGNeurosci.37,286–291.doi:10.1177/155005940603700405 PubMedAbstract|CrossRefFullText|GoogleScholar Gaab,N.,Gaser,C.,Zaehle,T.,Jäncke,L.,andSchlaug,G.(2003).Functionalanatomyofpitchmemory—anfMRIstudywithsparsetemporalsampling.Neuroimage19,1417–1426.doi:10.1016/S1053-8119(03)00224-6 PubMedAbstract|CrossRefFullText|GoogleScholar Grimault,S.,Lefebvre,C.,Vachon,F.,Peretz,I.,Zatorre,R.,Robitaille,N.,etal.(2009).Load-dependentbrainactivityrelatedtoacousticshort-termmemoryforpitch:magnetoencephalographyandfMRI.Ann.N.Y.Acad.Sci.1169,273–277.doi:10.1111/j.1749-6632.2009.04844.x PubMedAbstract|CrossRefFullText|GoogleScholar Grimault,S.,Nolden,S.,Lefebvre,C.,Vachon,F.,Hyde,K.,Peretz,I.,etal.(2014).Brainactivityisrelatedtoindividualdifferencesinthenumberofitemsstoredinauditoryshort-termmemoryforpitch:evidencefrommagnetoencephalography.Neuroimage94,96–106.doi:10.1016/j.neuroimage.2014.03.020 PubMedAbstract|CrossRefFullText|GoogleScholar Guimond,S.,Vachon,F.,Nolden,S.,Lefebvre,C.,Grimault,S.,andJolicoeur,P.(2011).Electrophysiologicalcorrelatesofthemaintenanceoftherepresentationofpitchobjectsinacousticshort-termmemory.Psychophysiology48,1500–1509.doi:10.1111/j.1469-8986.2011.01234.x PubMedAbstract|CrossRefFullText|GoogleScholar Jensen,O.,Kaiser,J.,andLachaux,J.P.(2007).Humangamma-frequencyoscillationsassociatedwithattentionandmemory.TrendsNeurosci.30,317–324.doi:10.1016/j.tins.2007.05.001 PubMedAbstract|CrossRefFullText|GoogleScholar Jensen,O.,andMazaheri,A.(2010).Shapingfunctionalarchitecturebyoscillatoryalphaactivity:gatingbyinhibition.Front.Hum.Neurosci.4:186.doi:10.3389/fnhum.2010.00186 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Heidegger,T.,Wibral,M.,Altmann,C.F.,andLutzenberger,W.(2007a).Alphasynchronizationduringauditoryspatialshort-termmemory.Neuroreport18,1129–1132.doi:10.1097/WNR.0b013e32821c553b PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Leiberg,S.,Rust,H.,andLutzenberger,W.(2007b).Prefrontalgamma-bandactivitydistinguishesbetweensounddurations.BrainRes.1139,153–162.doi:10.1016/j.brainres.2006.12.085 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Heidegger,T.,Wibral,M.,Altmann,C.F.,andLutzenberger,W.(2008).Distinctgamma-bandcomponentsreflecttheshort-termmemorymaintenanceofdifferentsoundlateralizationangles.Cereb.Cortex18,2286–2295.doi:10.1093/cercor/bhm251 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Leiberg,S.,andLutzenberger,W.(2005).Let’stalktogether:memorytracesrevealedbycooperativeactivationinthecerebralcortex.Int.Rev.Neurobiol.68,51–78.doi:10.1016/S0074-7742(05)68003-8 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,andLutzenberger,W.(2003).Inducedgamma-bandactivityandhumanbrainfunction.Neuroscientist9,475–484.doi:10.1177/1073858403259137 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Lutzenberger,W.,Decker,C.,Wibral,M.,andRahm,B.(2009a).Task-andperformance-relatedmodulationofdomain-specificauditoryshort-termmemoryrepresentationsinthegamma-band.Neuroimage46,1127–1136.doi:10.1016/j.neuroimage.2009.03.011 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Rahm,B.,andLutzenberger,W.(2009b).Temporaldynamicsofstimulus-specificgamma-bandactivitycomponentsduringauditoryshort-termmemory.Neuroimage44,257–264.doi:10.1016/j.neuroimage.2008.08.018 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,J.,Ripper,B.,Birbaumer,N.,andLutzenberger,W.(2003).Dynamicsofgamma-bandactivityinhumanmagnetoencephalogramduringauditorypatternworkingmemory.Neuroimage20,816–827.doi:10.1016/S1053-8119(03)00350-1 PubMedAbstract|CrossRefFullText|GoogleScholar Kawasaki,M.,Kitajo,K.,andYamaguchi,Y.(2010).Dynamiclinksbetweenthetaexecutivefunctionsandalphastoragebuffersinauditoryandvisualworkingmemory.Eur.J.Neurosci.31,1683–1689.doi:10.1111/j.1460-9568.2010.07217.x PubMedAbstract|CrossRefFullText|GoogleScholar Kawasaki,M.,Kitajo,K.,andYamaguchi,Y.(2014).Fronto-parietalandfronto-temporalthetaphasesynchronizationforvisualandauditory-verbalworkingmemory.Front.Psychol.5:200.doi:10.3389/fpsyg.2014.00200 PubMedAbstract|CrossRefFullText|GoogleScholar Klimesch,W.,Sauseng,P.,andHanslmayr,S.(2007).EEGalphaoscillations:theinhibition-timinghypothesis.BrainRes.Rev.53,63–88.doi:10.1016/j.brainresrev.2006.06.003 PubMedAbstract|CrossRefFullText|GoogleScholar Koelsch,S.,Schulze,K.,Sammler,D.,Fritz,T.,Muller,K.,andGruber,O.(2009).Functionalarchitectureofverbalandtonalworkingmemory:anFMRIstudy.Hum.BrainMapp.30,859–873.doi:10.1002/hbm.20550 PubMedAbstract|CrossRefFullText|GoogleScholar Kumar,S.,Joseph,S.,Pearson,B.,Teki,S.,Fox,Z.V.,Griffiths,T.D.,etal.(2013).Resourceallocationandprioritizationinauditoryworkingmemory.Cogn.Neurosci.4,12–20.doi:10.1080/17588928.2012.716416 PubMedAbstract|CrossRefFullText|GoogleScholar Lang,W.,Starr,A.,Lang,V.,Lindinger,G.,andDeecke,L.(1992).CorticalDCpotentialshiftsaccompanyingauditoryandvisualshort-termmemory.Electroencephalogr.Clin.Neurophysiol.82,285–295.doi:10.1016/0013-4694(92)90108-T PubMedAbstract|CrossRefFullText|GoogleScholar Lefebvre,C.,Vachon,F.,Grimault,S.,Thibault,J.,Guimond,S.,Peretz,I.,etal.(2013).Distinctelectrophysiologicalindicesofmaintenanceinauditoryandvisualshort-termmemory.Neuropsychologia51,2939–2952.doi:10.1016/j.neuropsychologia.2013.08.003 PubMedAbstract|CrossRefFullText|GoogleScholar Lehnert,G.,andZimmer,H.D.(2006).Auditoryandvisualspatialworkingmemory.Mem.Cogn.34,1080–1090.doi:10.3758/BF03193254 CrossRefFullText|GoogleScholar Leiberg,S.,Kaiser,J.,andLutzenberger,W.(2006a).Gamma-bandactivitydissociatesbetweenmatchingandnonmatchingstimuluspairsinanauditorydelayedmatching-to-sampletask.Neuroimage30,1357–1364.doi:10.1016/j.neuroimage.2005.11.010 PubMedAbstract|CrossRefFullText|GoogleScholar Leiberg,S.,Lutzenberger,W.,andKaiser,J.(2006b).Effectsofmemoryloadoncorticaloscillatoryactivityduringauditorypatternworkingmemory.BrainRes.1120,131–140.doi:10.1016/j.brainres.2006.08.066 PubMedAbstract|CrossRefFullText|GoogleScholar Luck,S.J.,andVogel,E.K.(2013).Visualworkingmemorycapacity:frompsychophysicsandneurobiologytoindividualdifferences.TrendsCogn.Sci.17,391–400.doi:10.1016/j.tics.2013.06.006 PubMedAbstract|CrossRefFullText|GoogleScholar Luo,H.,Husain,F.T.,Horwitz,B.,andPoeppel,D.(2005).Discriminationandcategorizationofspeechandnon-speechsoundsinanMEGdelayed-match-to-samplestudy.Neuroimage28,59–71.doi:10.1016/j.neuroimage.2005.05.040 PubMedAbstract|CrossRefFullText|GoogleScholar Lutzenberger,W.,Ripper,B.,Busse,L.,Birbaumer,N.,andKaiser,J.(2002).Dynamicsofgamma-bandactivityduringanaudiospatialworkingmemorytaskinhumans.J.Neurosci.22,5630–5638. PubMedAbstract|GoogleScholar Ma,W.J.,Husain,M.,andBays,P.M.(2014).Changingconceptsofworkingmemory.Nat.Neurosci.17,347–356.doi:10.1038/nn.3655 PubMedAbstract|CrossRefFullText|GoogleScholar Nolden,S.,Bermudez,P.,Alunni-Menichini,K.,Lefebvre,C.,Grimault,S.,andJolicoeur,P.(2013).Electrophysiologicalcorrelatesoftheretentionoftonesdifferingintimbreinauditoryshort-termmemory.Neuropsychologia51,2740–2746.doi:10.1016/j.neuropsychologia.2013.09.010 PubMedAbstract|CrossRefFullText|GoogleScholar Pasternak,T.,andGreenlee,M.W.(2005).Workingmemoryinprimatesensorysystems.Nat.Rev.Neurosci.6,97–107.doi:10.1038/nrn1603 PubMedAbstract|CrossRefFullText|GoogleScholar Rauschecker,J.P.,andTian,B.(2000).Mechanismsandstreamsforprocessingof“what”and“where”inauditorycortex.Proc.Natl.Acad.Sci.U.S.A.97,11800–11806.doi:10.1073/pnas.97.22.11800 PubMedAbstract|CrossRefFullText|GoogleScholar Rieder,M.K.,Rahm,B.,Williams,J.D.,andKaiser,J.(2011).Humangamma-bandactivityandbehavior.Int.J.Psychophysiol.79,39–48.doi:10.1016/j.ijpsycho.2010.08.010 PubMedAbstract|CrossRefFullText|GoogleScholar Ruchkin,D.S.,Berndt,R.S.,Johnson,R.,Jr.,Ritter,W.,Grafman,J.,andCanoune,H.L.(1997).Modality-specificprocessingstreamsinverbalworkingmemory:evidencefromspatio-temporalpatternsofbrainactivity.Cogn.BrainRes.6,95–113.doi:10.1016/S0926-6410(97)00021-9 PubMedAbstract|CrossRefFullText|GoogleScholar Sauseng,P.,Klimesch,W.,Heise,K.F.,Gruber,W.R.,Holz,E.,Karim,A.A.,etal.(2009).Brainoscillatorysubstratesofvisualshort-termmemorycapacity.Curr.Biol.19,1846–1852.doi:10.1016/j.cub.2009.08.062 PubMedAbstract|CrossRefFullText|GoogleScholar Sauseng,P.,Klimesch,W.,Schabus,M.,andDoppelmayr,M.(2005).Fronto-parietalEEGcoherenceinthetaandupperalphareflectcentralexecutivefunctionsofworkingmemory.Int.J.Psychophysiol.57,97–103.doi:10.1016/j.ijpsycho.2005.03.018 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:review,event-relatedpotentials,spectralactivity,gamma,coupling,spatialprocessing,non-spatialprocessing Citation:KaiserJ(2015)Dynamicsofauditoryworkingmemory.Front.Psychol.6:613.doi:10.3389/fpsyg.2015.00613 Received:26March2015;Accepted:25April2015;Published:11May2015. Editedby:TimothyM.Ellmore,TheCityCollegeofNewYork,USA Reviewedby:JonathanR.Folstein,FloridaStateUniversity,USAChristineLefebvre,CentredeRecherchedeL’institutUniversitairedeGériatriedeMontréal,Canada Copyright©2015Kaiser.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:JochenKaiser,InstituteofMedicalPsychology,GoetheUniversity,Heinrich-Hoffmann-Strasse10,60528FrankfurtamMain,Germany,[email protected] ThisarticleispartoftheResearchTopic TheTemporalDynamicsofCognitiveProcessing Viewall 15Articles Peoplealsolookedat Download
延伸文章資訊
- 1Auditory Memory - Sydney Therapy & Co
Auditory memory is the ability to take in information that is presented orally (out loud), proces...
- 2Dynamics of auditory working memory - Frontiers
Working memory denotes the ability to retain stimuli in mind that are no longer physically presen...
- 3Auditory Working Memory: A Comparison Study in Adults with ...
of this study is to compare the auditory working memory capacity (AWMC) in normal hearing adults ...
- 4An Introduction to Working Memory and Learning Disabilities
- 5Why Is Auditory Working Memory So Important?
Takeaway: Auditory working memory is a virtual 'workspace' in our mind. It's where we temporarily...