pn結- 維基百科,自由的百科全書 - Wikipedia

文章推薦指數: 80 %
投票人數:10人

該電位差稱為內建電位(built-in potential) V b i {\displaystyle V_{\rm {bi}}}. V_{{{\rm {bi}}}} 。

pn結的n區的電子向p區擴散,留下了正電荷在n區。

pn結 P型半導體和N型半導體之間相連的接觸面 語言 監視 編輯 一塊半導體晶體一側摻雜成p型半導體,另一側摻雜成n型半導體,中間二者相連的接觸面間有一個過渡層,稱為pn結、p-n結、pn接面(p-njunction)。

pn結是電子技術中許多元件,例如半導體二極體、雙極性電晶體的物質基礎。

pn結基本構造:圖示為以矽為主要材料的pn結。

電子學主題 目次 1歷史 2原理 2.1n型半導體 2.2p型半導體 2.3電子與空穴的移動 2.3.1漂移運動 2.3.2擴散運動 2.4pn結的形成 3性質 3.1平衡狀態(零偏置) 3.2正向偏置 3.3反向偏置 3.3.1反向崩潰 3.4伏安特性 3.5pn結的電容效應 3.5.1勢壘電容 3.5.2擴散電容 4應用 5參見 6參考資料 7參考文獻 歷史編輯 1948年,威廉·肖克利的論文《半導體中的pn結和pn接面型電晶體的理論》發表於貝爾實驗室內部刊物。

肖克利在1950年出版的《半導體中的電子和電洞》中詳盡地討論瞭結型電晶體的原理,與約翰·巴丁、沃爾特·布喇頓共同發明的點接觸型電晶體所採用的不同的理論。

原理編輯  如圖所示,從上到下依次是兩種半導體:接觸前、接觸、接觸後的載子分布情況 n型半導體編輯 參見:半導體 摻入少量雜質磷元素(或銻元素)的矽晶體(或鍺晶體)中,由於半導體原子(如矽原子)被雜質原子取代,磷原子外層的五個外層電子的其中四個與周圍的半導體原子形成共價鍵,多出的一個電子幾乎不受束縛,較為容易地成為自由電子。

於是,N型半導體就成為了含自由電子濃度較高的半導體,其導電性主要是因為自由電子導電。

p型半導體編輯 摻入少量雜質硼元素(或銦元素)的矽晶體(或鍺晶體)中,由於半導體原子(如矽原子)被雜質原子取代,硼原子外層的三個外層電子與周圍的半導體原子形成共價鍵的時候,會產生一個「電洞」,這個電洞可能吸引束縛電子來「填充」,使得硼原子成為帶負電的離子。

這樣,這類半導體由於含有較高濃度的「電洞」(「相當於」正電荷),成為能夠導電的物質。

電子與電洞的移動編輯 漂移運動編輯 參見:漂移速度 上面敘述的兩種半導體在外加電場的情況下,會作定向運動。

這種運動稱為電子與電洞(統稱「載子」)的「漂移運動」,並產生「漂移電流」。

根據靜電學,電子將作與外加電場相反方向的運動,並產生電流(根據傳統定義,電流的方向與電子運動方向相反,即和外加電場方向相同);而電洞的運動方向與外加電場相同,由於其可被看作是「正電荷」,將產生與電場方向相同的電流。

兩種載子的濃度越大,所產生的漂移電流越大。

擴散運動編輯 參見:擴散作用 由於某些外部條件而使半導體內部的載子存在濃度梯度的時候,將產生擴散運動,即載子由濃度高的位置向濃度低的位置運動。

pn結的形成編輯 採用一些特殊的製程(見本條目後面的段落),可以將上述的P型半導體和N型半導體緊密地結合在一起。

在二者的接觸面的位置形成一個PN接面。

p型、n型半導體由於分別含有較高濃度的「電洞」和自由電子,存在濃度梯度,所以二者之間將產生擴散運動。

即: 自由電子由n型半導體向p型半導體的方向擴散 電洞由p型半導體向n型半導體的方向擴散載子經過擴散的過程後,擴散的自由電子和電洞相互結合,使得原有的N型半導體的自由電子濃度減少,同時原有P型半導體的電洞濃度也減少。

在兩種半導體中間位置形成一個由N型半導體指向P型半導體的電場,稱為「內電場」。

性質編輯 平衡狀態(零偏壓)編輯 pn結在沒有外加電壓情況下,跨結形成了電位差導致了平衡狀態。

該電位差稱為內建電位(built-inpotential) V b i {\displaystyleV_{\rm{bi}}}  。

pn結的n區的電子向p區擴散,留下了正電荷在n區。

類似地,p型電洞從p區向n區擴散,留下了負電荷在p區。

進入了p區的電子與電洞複合,進入了n區的電洞與電子複合。

其效果是擴散到對方的多數載子(自由電子與電洞)都空乏了,結區只剩下不可移動的帶電離子,失去了電中性變為帶電,形成了空乏層(spacechargeregion)(見圖A)。

 圖A.零偏壓熱平衡下的pn結。

電子與電洞的濃度分別用藍線、紅線表示。

灰色區域是電中性。

亮紅色是正電區域,亮藍色區域是負電性。

底部顯示電場。

靜電力作用於電子與電洞,以及其擴散取向。

空乏區的電場與電子與電洞的擴散過程相反,阻礙進一步擴散。

載子濃度確定的平衡態在圖A中表示為紅線與藍線。

 圖B.pn結在零偏壓與熱平衡狀態下。

底部繪出了電荷密度、電場、電壓。

空乏層的多數載子已經全部空乏,留下的電荷密度等於淨摻雜水平。

當平衡達到時,電荷密度近似顯示為階梯函數,空乏層與中立區的邊界相當陡峭。

(見圖B的Q(x)圖)。

空乏層在pn結兩側有相同量的電荷,因此它向較少摻雜的一側延展更遠(圖A與圖B的n端)。

順向偏壓編輯 若施加在p區的電壓高於n區的電壓,稱為順向偏壓(forwardbias)。

 順向偏壓下的pn結,表現為空乏層變薄。

在p端與n端均摻雜1e15/cm3水平,導致內在電位~0.59 V。

空乏厚度的降低可以從電荷分布曲線上推斷。

在順向偏壓電壓的外電場作用下,N區的電子與P區的電洞被推向pn結。

這降低了空乏區的空乏寬度。

這降低了pn結的電位差(即內在電場)。

隨著順向電壓的增加,空乏區最終變得足夠薄以至於內電場不足以反作用抑制多數載子跨pn結的擴散運動,因而降低了pn結的電阻。

跨過pn結注入p區的電子將擴散到附近的電中性區。

所以pn結附近的電中性區的少數載子的擴散量確定了二極體的順向電流。

僅有多數載子能夠在半導體材料中長距離移動。

因此,注入p區的電子不能繼續移動更遠,而是很快與電洞複合。

少數載子在注入中性區後移動的平均距離稱為擴散長度(diffusionlength),一般來說僅有微米等級。

[1]雖然跨過p-n結的電子在p-區只能穿透短距離,但順向電流不被打斷,因為電洞(p-區的多數載子)在外電場驅動下在向相反方向移動。

從p-區跨越pn結注入n-區的電洞也具有類似性質。

順向偏壓下,跨pn結的電流強度取決於多數載子的密度,這一密度隨順向偏壓電壓的大小成指數增加。

這使得二極體可以導通順向大電流。

逆向偏壓編輯  逆向偏壓的矽p–n結。

若施加在n區的電壓高於p區的電壓,這種狀態稱為pn結逆向偏壓(reversebias)。

由於p區連接電源負極,多數載子(電洞)被外電場拉向負極,因而空乏層變厚。

n區也發生類似變化。

並且隨逆向偏壓電壓的增加,空乏層的厚度增加。

從而,多數載子擴散過pn結的勢壘增大,pn結的電阻變大,宏觀看二極體成為絕緣體。

逆向偏壓時形成極其微弱的漂移電流,電流由N區流向P區,並且這個電流不隨逆向電壓的增大而變化,稱為「逆向飽和電流」(reversesaturationcurrent)。

這是因為逆向電流是由少數載子跨pn結形成的,因此其「飽和」值取決於少數載子的摻雜密度。

由於逆向飽和電流很小,pn結處於截止狀態,所以外加逆向電壓時,pn結相當於斷路。

當加在pn結上的逆向電壓超過一定數值時,pn結的電阻突然減小,逆向電流急劇增大,這種現象稱為擊穿。

電擊擊穿分為雪崩擊穿和齊納擊穿(英語:Zenereffect)且都是可逆的。

發生熱擊穿後,pn結不再具有單向導電性,導致二極體發生不可恢復的損壞。

利用齊納擊穿製作的穩壓二極體,稱為稽納二極體。

逆向崩潰編輯 當逆向電壓逐漸增大時,逆向飽和電流不變。

但是當逆向電壓達到一定值時,pn結將被擊穿。

在pn結中加逆向電壓,如果逆向電壓過大,位於pn結中的載子會擁有很大的動能,足以和中性粒子碰撞使中性粒子分離出價電子而產生電洞-電子對。

這樣會導致pn結逆向電流的急劇增大,發生pn接面的擊穿,因為被彈出的價電子又可能和其他中性粒子碰撞產生連鎖反應,類似於雪崩,這樣的逆向擊穿方式成為突崩潰(Avalanchebreakdown)。

摻雜濃度越低所需電場越強。

當摻雜濃度非常高時,在pn結兩端加入弱電場就會使中性粒子中的價電子脫離原子的束縛,從而成為載流子。

導致pn結的擊穿。

這樣的擊穿被稱作齊納擊穿(Zenerbreakdown)。

摻雜濃度越高所需要的電場越弱。

一般小於6V的電壓引起的是齊納擊穿,大於6V的引起的是雪崩擊穿。

[2] 伏安特性編輯  pn結的伏安特性曲線。

圖例:藍色表示順向導通的狀態;綠色為逆向飽和電流的狀態;黃色表示pn結被擊穿的狀態;紅色部分表示即將被導通的狀態 pn結的最大特性為單向導電性,反映到伏安特性曲線如右圖。

當順向電壓達到一定值時,pn結將產生順向偏壓,pn結被導通(圖中藍色部分);當逆向電壓在一定範圍內時,pn結產生微弱的逆向飽和電流(圖中綠色部分);當逆向電壓超過一定值時,pn結被擊穿(圖中黃色部分)。

pn結的電容效應編輯 在pn結(兩種半導體的交界處)會因為外加電壓產生一定電荷積累,即結電容( C j {\displaystyleC_{j}}  )效應。

根據成因分為「勢壘電容」( C b {\displaystyleC_{b}}  )和「擴散電容」( C d {\displaystyleC_{d}}  )。

結電容滿足: C j = C b + C d {\displaystyleC_{j}=C_{b}+C_{d}}  勢壘電容編輯 當外加電壓的時候,「空乏層」的厚度發生變化,將會引起其電荷量的變化。

從而產生等效的電容效應,即「勢壘電容」 C b {\displaystyleC_{b}}  。

它與pn結面積、空乏層寬度、半導體介電常數和外加電壓都有關係。

擴散電容編輯 當外加電壓變化時,擴散區(參見上文所述擴散運動)內電荷的積累和釋放過程將產生等效於電容的充放電過程,故等效於一個「擴散電容」 C d {\displaystyleC_{d}}  。

應用編輯 參見:二極體和雙極性電晶體 由於pn結的單向導電性,可以利用它作為基礎製造半導體二極體、三極體等電子元件,例如常用的穩壓二極體、光電二極體、發光二極體(LED)等。

參見編輯 半導體 異質接面 二極體參考資料編輯 ^Hook,J.R.;H.E.Hall.SolidStatePhysics.JohnWiley&Sons.2001.ISBN 0-471-92805-4.  ^馮軍,謝嘉奎.电子线路:线性部分(第五版).北京:高等教育出版社.2010.  參考文獻編輯 趙凱華、陳熙謀.《新概念物理教程·电磁学》(第二版).高等教育出版社.ISBN 9787040202021.  熊年祿等.《模拟电路》.北京郵電大學出版社.ISBN 978-7-5635-2227-9.  DavidHalliday,RobertResnick,JearlWalker.FundamentalsofPhysicsExtended.Wiley.ISBN 9780471758013.  取自「https://zh.wikipedia.org/w/index.php?title=Pn结&oldid=74119691」



請為這篇文章評分?